Abstract

This paper presents a vibration control unit formed by an electromagnetic proof-mass transducer connected to a sweeping resistive–inductive (RL)-shunt, which can be used to control broadband flexural vibrations of thin structures. The shunt is composed of a resistor and an inductor in series, whose values vary harmonically in time. The design and practical implementation of an electromagnetic transducer and harmonically varying shunt is first discussed. The unit is then tested on a thin-walled cylinder exposed to a broadband disturbance, considering two operation modes: fixed and sweeping RL-shunts. The former mode sets the unit to control the resonant response of a target flexural mode of the cylinder. The latter mode sets the unit to control the resonant responses of multiple modes of the cylinder with natural frequencies confined in a target frequency band. The study demonstrates the practical feasibility of a unit, which sweeps the natural frequency and the damping ratio of the transducer between 36 Hz and 187 Hz and between 4% and 60%. Also, it shows the unit generates broadband control of the flexural vibration of a cylinder, with reductions of the peak responses of the natural modes resonating in frequency band of the sweep comprised between 2 and 13 dB.

References

1.
Thompson
,
D. J.
, and
Dixon
,
J.
,
2004
, “Vehicle Noise,”
Advanced Applications in Acoustics, Noise and Vibration
,
F.
Fahy
, and
J.
Walker
, eds.,
Spon Press
,
London
, Chap. VI.
2.
Thompson
,
D. J.
,
2009
,
Railway Noise and Vibration: Mechanisms, Modelling and Means of Control
,
Elsevier
,
Amsterdam
.
3.
Mixon
,
J. S.
, and
Wilby
,
J. F.
,
1991
, “Interior Noise,”
Aeroacoustics of Flight Vehicles: Theory and Practice
, Volume 2: Noise Control,
H. H.
Hubbard
, ed.,
NASA Reference Publications
,
Hampton, VA
, Chap XVI.
4.
Mead
,
D. J.
,
2000
,
Passive Vibration Control
,
John Wiley & Sons
,
Chichester
.
5.
Brennan
,
M. J.
, and
Ferguson
,
N. S.
,
2004
, “Vibration Control,”
Advanced Applications in Acoustics, Noise and Vibration
,
F.
Fahy
, and
J.
Walker
, eds.,
Spon Press
,
London
, Chapter XII.
6.
Thompson
,
D.
,
2015
, “Noise Control,”
Fundamentals of Sound and Vibration
,
F.
Fahy
, and
D.
Thompson
, eds.,
CRC Press
,
Chichester
.
7.
Ji
,
H.
,
Qiu
,
J.
, and
Xia
,
P.
,
2010
, “Semi-active Vibration Control Based on Switched Piezoelectric Transducers,”
Vibration Contro
,
M.
Lallart
, ed.,
Sciyo
,
Rijeka HR
, Chapter X.
8.
Preumont
,
A.
,
2011
,
Vibration Control of Active Structures, an Introduction
,
Springer
,
Berlin, Germany
.
9.
Fuller
,
C. R.
,
Elliott
,
S. J.
, and
Nelson
,
P. A.
,
1996
,
Active Control of Vibration
,
Academic Press
,
London
.
10.
Gardonio
,
P.
, and
Turco
,
E.
,
2019
, “
Tuning of Vibration Absorbers and Helmholtz Resonators Based on Modal Density/Overlap Parameters of Distributed Mechanical and Acoustic Systems
,”
J. Sound Vib.
,
451
, pp.
32
70
. 10.1016/j.jsv.2019.03.015
11.
Petitjean
,
B. B.
,
Legrain
,
I.
,
Simon
,
F.
, and
Pauzin
,
S.
, “
Active Control Experiments for Acoustic Radiation Reduction of a Sandwich Panel: Feedback and Feedforward Investigations
,”
J. Sound Vib.
,
252
(
1
), pp.
19
36
. 10.1006/jsvi.2001.4022
12.
González Díaz
,
C.
,
Paulitsch
,
C.
, and
Gardonio
,
P.
,
2008
, “
Active Damping Control Unit Using a Small Scale Proof Mass Electrodynamic Actuator
,”
J. Acoust. Soc. Am.
,
124
(
2
), pp.
886
897
. 10.1121/1.2945167
13.
Díaz
,
G.
,
Paulitsch
,
C.
, and
Gardonio
,
C.
,
2008
, “
Smart Panel With Active Damping Units. Implementation of Decentralized Control
,”
J. Acoust. Soc. Am.
,
124
(
2
), pp.
898
910
. 10.1121/1.2945168
14.
Camperi
,
S.
,
Ghandchi Tehrani
,
M.
, and
Elliott
,
S. J.
,
2018
, “
Parametric Study on the Optimal Tuning of an Inertial Actuator for Vibration Control of a Plate: Theory and Experiments
,”
J. Sound Vib.
,
435
, pp.
1
22
. 10.1016/j.jsv.2018.07.048
15.
Gardonio
,
P.
,
Bianchi
,
E.
, and
Elliott
,
S. J.
,
2004
, “
Smart Panel With Multiple Decentralized Units for the Control of Sound Transmission Part III: Control System Implementation
,”
J. Sound Vib.
,
274
(
1–2
), pp.
215
232
. 10.1016/j.jsv.2003.05.006
16.
Berkhoff
,
A. P.
, and
Wesselink
,
J. M.
,
2011
, “
Combined MIMO Adaptive and Decentralized Controllers for Broadband Active Noise and Vibration Control
,”
Mech. Syst. Signal Process.
,
25
(
5
), pp.
1702
1714
. 10.1016/j.ymssp.2010.12.012
17.
Palomera-Arias
,
R.
,
Connor
,
J. J.
, and
Ochsendorf
,
J. A.
,
2008
, “
Feasibility Study of Passive Electromagnetic Damping Systems
,”
J. Struct. Eng.
,
134
(
1
), pp.
164
170
. 10.1061/(ASCE)0733-9445(2008)134:1(164)
18.
Cheng
,
T. H.
, and
Oh
,
I. K.
,
2009
, “
A Current-Flowing Electromagnetic Shunt Damper for Multi-Mode Vibration Control of Cantilever Beams
,”
Smart Mater. Struct.
,
18
(
9
), p.
095036
. 10.1088/0964-1726/18/9/095036
19.
Paulitsch
,
C.
,
Gardonio
,
P.
, and
Elliott
,
S. J.
,
2007
, “
Active Vibration Damping Using an Inertial, Electrodynamic Actuator
,”
ASME J. Vib. Acoust.
,
129
(
1
), pp.
39
47
. 10.1115/1.2349537
20.
Zhu
,
S.
,
Shen
,
W.
, and
Xu
,
Y.
,
2012
, “
Linear Electromagnetic Devices for Vibration Damping and Energy Harvesting: Modeling and Testing
,”
Eng. Struct.
,
34
, pp.
198
212
. 10.1016/j.engstruct.2011.09.024
21.
Behrens
,
S.
,
Fleming
,
A. J.
, and
Moheimani
,
S. O. R.
,
2003
, “
Electromagnetic Shunt Damping
,”
Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003)
,
Kobe, Japan
,
July 20–24
, pp.
1145
1150
.
22.
Behrens
,
S.
,
Fleming
,
A. J.
, and
Moheimani
,
S. O. R.
,
2005
, “
Passive Vibration Control via Electromagnetic Shunt Damping
,”
IEEE/ASME Trans. Mechatron.
,
10
(
1
), pp.
118
122
. 10.1109/TMECH.2004.835341
23.
Fleming
,
A. J.
, and
Moheimani
,
S. O. R.
,
2006
, “
Inertial Vibration Control Using a Shunted Electromagnetic Transducer
,”
IEEE/ASME Trans. Mechatron.
,
11
(
1
), pp.
84
92
. 10.1109/TMECH.2005.863364
24.
Niu
,
H.
,
Zhang
,
X.
,
Xie
,
S.
, and
Wang
,
P.
,
2009
, “
A New Electromagnetic Shunt Damping Treatment and Vibration Control of Beam Structures
,”
Smart Mater. Struct.
,
18
(
18
), p.
045009
.
25.
Yan
,
B.
,
Zhang
,
X.
,
Luo
,
Y.
,
Zhang
,
Z.
,
Xie
,
S.
, and
Zhang
,
Y.
,
2014
, “
Negative Impedance Shunted Electromagnetic Absorber for Broadband Absorbing: Experimental Investigation
,”
Smart Mater. Struct.
,
23
(
12
), p.
125044
.
26.
Zhang
,
X.
,
Niu
,
H.
, and
Yan
,
B.
,
2012
, “
A Novel Multimode Negative Inductance Negative Resistance Shunted Electromagnetic Damping and Its Application on a Cantilever Plate
,”
J. Sound Vib.
,
331
(
10
), pp.
2257
2271
. 10.1016/j.jsv.2011.12.028
27.
Yan
,
B.
,
Zhang
,
X.
, and
Niu
,
H.
,
2012
, “
Design and Test of a Novel Isolator With Negative Resistance Electromagnetic Shunt Damping
,”
Smart Mater. Struct.
,
21
(
3
), p.
125044
.
28.
Inoue
,
T.
,
Ishida
,
Y.
, and
Sumi
,
M.
,
2008
, “
Vibration Suppression Using Electromagnetic Resonant Shunt Damper
,”
ASME J. Vib. Acoust.
,
130
(
4
), pp.
1
8
. 10.1115/1.2889916
29.
Li
,
J.-Y.
, and
Zhu
,
S.
,
2018
, “
Versatile Behaviours of Electromagnetic Shunt Damper With Negative Impedance Converter
,”
IEEE/ASME Trans. Mechatron.
,
23
(
3
), pp.
1415
1424
. 10.1109/TMECH.2018.2813307
30.
Zhu
,
S.
,
Shen
,
W.
, and
Qian
,
X.
,
2013
, “
Dynamic Analogy Between an Electromagnetic Shunt Damper and a Tuned Mass Damper
,”
Smart Mater. Struct.
,
22
(
11
), p.
115018
. 10.1088/0964-1726/22/11/115018
31.
Stabile
,
A.
,
Aglietti
,
G. S.
,
Richardson
,
G.
, and
Smet
,
G.
,
2017
, “
A 2-Collinear-DoF Strut With Embedded Negative Resistance Electromagnetic Shunt Dampers for Spacecraft Micro-Vibration
,”
Smart Mater. Struct.
,
26
(
4
), p.
045031
. 10.1088/1361-665X/aa61e3
32.
Niederberger
,
D.
,
Behrens
,
S.
,
Fleming
,
A. J.
,
Moheimani
,
S. O. R.
, and
Morari
,
M.
,
2006
, “
Adaptive Electromagnetic Shunt Damping
,”
IEEE/ASME Trans. Mechatron.
,
11
(
1
), pp.
103
108
. 10.1109/TMECH.2005.859844
33.
McDaid
,
A. J.
, and
Mace
,
B. R.
,
2013
, “
A Self-Tuning Electromagnetic Vibration Absorber With Adaptive Shunt Electronics
,”
Smart Mater. Struct.
,
22
(
10
), p.
105013
. 10.1088/0964-1726/22/10/105013
34.
McDaid
,
A. J.
, and
Mace
,
B. R.
,
2016
, “
A Robust Adaptive Tuned Vibration Absorber Using Semi-Passive Shunt Electronics
,”
IEEE Trans. Ind. Electron.
,
63
(
8
), pp.
5069
5077
. 10.1109/tie.2016.2554541
35.
Kamali
,
S. H.
,
Moallem
,
M.
, and
Arzanpour
,
S.
,
2018
, “
Realization of an Energy-Efficient Adjustable Mechatronic Spring
,”
IEEE/ASME Trans. Mechatron.
,
23
(
4
), pp.
1877
1885
. 10.1109/TMECH.2018.2843799
36.
Dal Bo
,
L.
, and
Gardonio
,
P.
,
2018
, “
Energy Harvesting With Electromagnetic and Piezoelectric Seismic Transducers: Unified Theory and Experimental Validation
,”
J. Sound Vib.
,
433
, pp.
385
424
. 10.1016/j.jsv.2018.06.034
37.
Gardonio
,
P.
, and
Zilletti
,
M.
,
2012
, “
Sweeping Tunable Vibration Absorbers for Low—Mid Frequencies Vibration Control
,”
J. Sound Vib.
,
354
, pp.
1
12
. 10.1016/j.jsv.2015.05.024
38.
Turco
,
E.
, and
Gardonio
,
P.
,
2017
, “
Sweeping Shunted Electro-Magnetic Tuneable Vibration Absorber: Design and Implementaion
,”
J. Sound Vib.
,
407
, pp.
82
105
. 10.1016/j.jsv.2017.06.035
39.
Casagrande
,
D.
,
Gardonio
,
P.
, and
Zilletti
,
M.
,
2017
, “
Smart Panel with Time-Varying Shunted Piezoelectric Patch Absorbers for Broadband Vibration Control
,”
J. Sound Vib.
,
400
, pp.
288
304
. 10.1016/j.jsv.2017.04.012
40.
Zilletti
,
M.
,
Elliott
,
S. J.
, and
Rustighi
,
E.
,
2012
, “
Optimisation of Dynamic Vibration Absorbers to Minimise Kinetic Energy and Maximise Internal Power Dissipation
,”
J. Sound Vib.
,
331
(
18
), pp.
4093
4100
. 10.1016/j.jsv.2012.04.023
41.
Den Hartog
,
J. P.
,
1986
,
Mechanical Vibrations
, 4th ed.,
McGraw-Hill
,
New York
.
42.
Snowdon
,
J. C.
,
1968
,
Vibration and Shock in Damped Mechanical Systems
,
John Wiley and Sons
,
New York
.
43.
Cunefare
,
K. A.
,
De Rosa
,
S.
,
Sadegh
,
N.
, and
Larson
,
G.
,
2000
, “
State-Switched Absorber for Semi-Active Structural Control
,”
J. Intell. Mater. Syst. Struct.
,
11
(
4
), pp.
300
310
. 10.1106/U0K2-70FU-DR0W-MWU3
44.
Holdhusen
,
M. H.
, and
Cunefare
,
K. A.
,
2007
, “
A State-Switched Absorber Used for Vibration Control of Continuous Systems
,”
ASME J. Vib. Acoust.
,
129
(
5
), pp.
577
589
. 10.1115/1.2748465
45.
Clark
,
W. W.
,
2000
, “
Vibration Control with State-Switched Piezoelectric Materials
,”
J. Intell. Mater. Syst. Struct.
,
11
(
4
), pp.
263
271
. 10.1106/18CE-77K4-DYMG-RKBB
46.
Guyomar
,
D.
,
Badel
,
A.
,
Lefeuvre
,
E.
, and
Richard
,
C.
,
2005
, “
Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing
,”
IEEE Trans. Sonics Ultrason. Ferroelectr. Freq. Control
,
52
(
4
), pp.
584
595
. 10.1109/TUFFC.2005.1428041
47.
Guyomar
,
D.
,
Richard
,
C.
, and
Mohammadi
,
S.
,
2007
, “
Semi-passive Random Vibration Control Based on Statistic
,”
J. Sound Vib.
,
307
(
3–5
), pp.
818
833
. 10.1016/j.jsv.2007.07.008
48.
Dal Bo
,
L.
,
Gardonio
,
P.
,
Casagrande
,
D. E.
, and
Saggini
,
S.
,
2019
, “
Smart Panel With Sweeping and Switching Piezoelectric Patch Vibration Absorbers: Experimental Results
,”
Mech. Syst. Signal Process.
,
120
, pp.
308
325
. 10.1016/j.ymssp.2018.10.024
49.
Hiemstra
,
D. B.
,
Parmar
,
G.
, and
Awtar
,
S.
,
2014
, “
Performance Tradeoffs Posed by Moving Magnet Actuators in Flexure-Based Nanopositioning
,”
IEEE/ASME Trans. Mechatron.
,
19
(
1
), pp.
201
212
. 10.1109/TMECH.2012.2226738
50.
Hunt
,
F. V.
,
1982
,
Electroacoustics, the Analysis of Transduction and Historical Background
,
Acoustical Society of America
,
New York
.
51.
Brauer
,
J. R.
,
2014
,
Magnetic Actuators and Sensors
, 2nd ed.,
Wiley-IEEE Press
,
Piscataway, NJ
.
52.
Krause
,
P.
,
Wasynczuk
,
O.
, and
Pekarek
,
S.
,
2012
,
Electromechanical Motion Devices
, 2nd ed.,
Wiley-IEEE Press
,
Piscataway, NJ
.
53.
Crandall
,
S. H.
,
1982
,
Dynamics of Mechanical and Electromechanical Systems
, 19th ed.,
Krieger Publishing Co. Inc.
,
Malbar, FL
.
54.
Paulitsch
,
C.
,
Gardonio
,
P.
, and
Elliott
,
S. J.
,
2006
, “
Active Vibration Damping Using Self-Sensing, Electrodynamic Actuators
,”
Smart Struct. Mater.
,
15
(
2
), pp.
499
508
. 10.1088/0964-1726/15/2/033
55.
Fleming
,
A. J.
,
Behrens
,
S.
, and
Moheimani
,
S. O. R.
,
2000
, “
Synthetic Impedance for Implementation of Piezoelectric Shunt-Damping Circuits
,”
Electron. Lett.
,
36
(
18
), pp.
1525
1526
. 10.1049/el:20001083
56.
Behrens
,
S.
,
Fleming
,
A. J.
, and
Moheimani
,
S. O. R.
,
2004
, “
Vibration Isolation Using a Shunted Electromagnetic Transducer
,”
Proceeding of the SPIE—The International Society for Optical Engineering
,
San Diego, CA
,
Mar. 14–18
, pp.
506
515
.
57.
Zilletti
,
M.
,
Elliott
,
S. J.
, and
Ghandchi Tehrani
,
M.
,
2016
, “
Electromechanical Pendulum for Vibration Control and Energy Harvesting
,”
Proceedings of the Sixth EACS
,
Sheffield, UK
,
July 11–13
, pp.
1
10
.
58.
Zilletti
,
M.
,
Elliott
,
S. J.
, and
Ghandchi Tehrani
,
M.
,
2017
, “
Tuneable Electromechanical Pendulum for Vibration Control
,”
Proceedings of the XXXV IMAC
,
Los Angeles, CA
,
Jan. 30–Feb. 2
pp.
1
10
.
59.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Workman
,
M. L.
,
1997
,
Digital Control of Dynamic Systems
,
Addison Wesley Longman Inc.
,
Menlo Park, CA
.
60.
Miani
,
S.
,
Zilletti
,
M.
,
Gardonio
,
P.
,
Blanchini
,
F.
, and
Colaneri
,
P.
,
2018
, “
Switching and Sweeping Vibration Absorbers: Theory and Experimental Validation
,”
Automatica
,
93
, pp.
290
301
. 10.1016/j.automatica.2018.03.021
61.
Gardonio
,
P.
, and
Zilletti
,
M.
,
2013
, “
Integrated Tuned Vibration Absorbers: A Theoretical Study
,”
J. Acoust. Soc. Am.
,
134
(
5
), pp.
3631
3644
. 10.1121/1.4824123
62.
Gardner
,
W. A.
,
1986
,
Statistical Spectral Analysis: a non-Probabilistic Theory
,
Prentice-Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.