Abstract

We explore the vibration attenuation of a periodic structure when one absorber with nonlinear cubic stiffness is included without increasing the total mass. Metastructures, and specifically periodic structures, present interesting characteristics for vibration attenuation that are not found in classical structures. These characteristics have been explored for automotive and aerospace applications, among others, as structures with low mass are paramount for these industries, and keeping low vibration levels in wide frequency range is also desirable. It has been shown that the addition of vibration absorbers in a periodic arrangement can provide vibration attenuation for shock input without increasing the total mass of a structure. In this work, the dynamical response of a metastructure with one nonlinear vibration absorber, with same mass as original structure, optimized for vibration attenuation under harmonic input is compared with a base metastructure without absorbers and a metastructure with linear absorbers via the evaluation of the H2 norm of the frequency response. A simplified approach is used to compare linear and nonlinear stiffness based on deformation energy, by considering linear and nonlinear restoring forces to be equal at mean deformation. The dynamical response of the optimal system is obtained numerically, and an optimization procedure based on sequential quadratic programming (SQP) is proposed to find the optimal position and stiffness coefficients of only one nonlinear absorber, showing that it results in lower level of vibrations than original structure and than structure with linear absorbers, while almost the same level as a structure with all nonlinear absorbers.

References

1.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
. 10.1115/1.4026911
2.
Mead
,
D. M.
,
1996
, “
Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton, 1964–1995
,”
J. Sound Vib.
,
190
(
3
), pp.
495
524
. 10.1006/jsvi.1996.0076
3.
Narisetti
,
R. K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2010
, “
A Perturbation Approach for Predicting Wave Propagation in One-Dimensional Nonlinear Periodic Structures
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031001
. 10.1115/1.4000775
4.
Xiao
,
Y.
,
Wen
,
J.
,
Yu
,
D.
, and
Wen
,
W.
,
2013
, “
Flexural Wave Propagation in Beams With Periodically Attached Vibration Absorbers: Band-Gap Behavior and Band Formation Mechanisms
,”
J. Sound Vib.
,
332
(
4
), pp.
867
893
. 10.1016/j.jsv.2012.09.035
5.
DePauw
,
S.
,
Al Ba’ba’a
,
H.
, and
Nouth
,
M.
,
2018
, “
Metadamping and Energy Dissipation Enhancement Via Hybrid Phononic Resonators
,”
Extreme Mech. Lett.
,
18
, pp.
36
44
. 10.1016/j.eml.2017.11.002
6.
Beli
,
D.
,
Arruda
,
J. R. F.
, and
Ruzzene
,
M.
,
2018
, “
Wave Propagation in Elastic Metamaterial Beams and Plates With Interconnected Resonators
,”
Int. J. Solids Struct.
,
139–140
, pp.
105
120
. 10.1016/j.ijsolstr.2018.01.027
7.
Beli
,
D.
,
Fabro
,
A. T.
,
Ruzzene
,
M.
, and
Arruda
,
J. R. F.
,
2019
, “
Wave Attenuation and Trapping in 3D Printed Cantilever-in-Mass Metamaterials With Spatially Correlated Variability
,”
Sci. Rep.
,
9
, p.
5617
. 10.1038/s41598-019-41999-0
8.
Fabro
,
A. T.
,
Beli
,
D.
,
Arruda
,
J. R. F.
,
Ferguson
,
N. S.
, and
Mace
,
B. R.
,
2016
, “
Uncertainty Analysis of Band Gaps for Beams With Periodically Distributed Resonators Produced by Additive Manufacturing
,”
Proceedings of the 27th International Conference on Noise and Vibration Engineering (ISMA2016)
,
Leuven, Belgium
,
Sept. 19–21
,
P.
Sas
,
D.
Moens
, and
A.
van de Walle
, eds., pp.
19
24
.
9.
Cveticanin
,
L.
,
Zukovic
,
M.
, and
Cveticanin
,
D.
,
2018
, “
Influence of Nonlinear Subunits on the Resonance Frequency Band Gaps of Acoustic Metamaterial
,”
Nonlinear Dyn.
,
93
, pp.
1
11
. 10.1007/s11071-018-4263-5
10.
Lamarque
,
C. H.
,
Ture Savadkoohi
,
A.
, and
Charlemagne
,
S.
,
2018
, “
Experimental Results on the Vibratory Energy Exchanges Between a Linear System and a Chain of Nonlinear Oscillators
,”
J. Sound Vib.
,
437
, pp.
97
109
. 10.1016/j.jsv.2018.09.004
11.
Chakraborty
,
G.
, and
Mallik
,
A. K.
,
2001
, “
Dynamics of a Weakly Non-Linear Periodic Chain
,”
Int. J. Non-Linear Mech.
,
36
(
2
), pp.
375
389
. 10.1016/S0020-7462(00)00024-X
12.
Veselago
,
V. G.
,
1968
, “
The Electrodynamics of Substances With Simultaneously Negative Values of ε and μ
,”
Soviet Physics Uspekhi
,
10
(
4
), p.
509
. 10.1070/PU1968v010n04ABEH003699
13.
Yao
,
S.
,
Zhou
,
X.
, and
Hu
,
G.
,
2008
, “
Experimental Study on Negative Effective Mass in a 1D Mass–Spring System
,”
New J. Phys.
,
10
(
4
), p.
043020
. 10.1088/1367-2630/10/4/043020
14.
Krödel
,
S.
,
Thomé
,
N.
, and
Daraio
,
C.
,
2015
, “
Wide Band-Gap Seismic Metastructures
,”
Extreme Mech. Lett.
,
4
, pp.
111
117
. 10.1016/j.eml.2015.05.004
15.
Hobeck
,
J. D.
,
Laurant
,
C. M. V.
, and
Inman
,
D. J.
,
2015
, “
3D Printing of Metastructures for Passive Broadband Vibration Suppression
,”
20th International Conference on Composite Materials
,
Copenhagen, Denmark
,
July 19–24
,
O. T.
Thomsen
,
C.
Berggreen
, and
B. F.
Sørensen
, eds., pp.
19
24
.
16.
Sugino
,
C.
, and
Erturk
,
A.
,
2018
, “
Analysis of Multifunctional Piezoelectric Metastructures for Low-Frequency Bandgap Formation and Energy Harvesting
,”
J. Phys. D: Appl. Phys.
,
51
(
21
), p.
215103
. 10.1088/1361-6463/aab97e
17.
Sugino
,
C.
,
Xia
,
Y.
,
Leadenham
,
S.
,
Ruzzene
,
M.
, and
Erturk
,
A.
,
2017
, “
A General Theory for Bandgap Estimation in Locally Resonant Metastructures
,”
J. Sound Vib.
,
406
, pp.
104
123
. 10.1016/j.jsv.2017.06.004
18.
Zhu
,
R.
,
Liu
,
X. N.
,
Hu
,
G. K.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2014
, “
A Chiral Elastic Metamaterial Beam for Broadband Vibration Suppression
,”
J. Sound Vib.
,
333
(
10
), pp.
2759
2773
. 10.1016/j.jsv.2014.01.009
19.
Hobeck
,
J. D.
, and
Inman
,
D. J.
,
2015
, “
Magnetoelastic Metastructures for Passive Broadband Vibration Suppression
,”
SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring
,
San Diego, CA
,
Apr. 2
, p.
943119
.
20.
Reichl
,
K. K.
, and
Inman
,
D. J.
,
2017
, “
Lumped Mass Model of a 1D Metastructure for Vibration Suppression With No Additional Mass
,”
J. Sound Vib.
,
403
, pp.
75
89
. 10.1016/j.jsv.2017.05.026
21.
Marathe
,
A.
, and
Chatterjee
,
A.
,
2006
, “
Wave Attenuation in Nonlinear Periodic Structures Using Harmonic Balance and Multiple Scales
,”
J. Sound Vib.
,
289
(
4–5
), pp.
871
888
. 10.1016/j.jsv.2005.02.047
22.
Yun
,
Y.
,
Miao
,
G. Q.
,
Zhang
,
P.
,
Huang
,
K.
, and
Wei
,
R. J.
,
2005
, “
Nonlinear Acoustic Wave Propagating in One-Dimensional Layered System
,”
Phys. Lett. A
,
343
(
5
), pp.
351
358
. 10.1016/j.physleta.2005.05.092
23.
Vakakis
,
A. F.
, and
King
,
M. E.
,
1998
, “
Resonant Oscillations of a Weakly Coupled, Nonlinear Layered System
,”
Acta Mech.
,
128
(
12
), pp.
59
80
. 10.1007/BF01463160
24.
Rao
,
S. S.
,
2009
,
Engineering Optimization: Theory and Practice
, 4th ed.,
John Wiley & Sons
,
Hoboken, NJ
.
25.
Chen
,
Y.
,
Zhou
,
S.
, and
Li
,
Q.
,
2010
, “
Multiobjective Topology Optimization for Finite Periodic Structures
,”
Comput. Struct.
,
88
(
11–12
), pp.
806
811
. 10.1016/j.compstruc.2009.10.003
26.
Abdeljaber
,
O.
,
Avci
,
O.
, and
Inman
,
D. J.
,
2016
, “
Optimization of Chiral Lattice Based Metastructures for Broadband Vibration Suppression Using Genetic Algorithms
,”
J. Sound Vib.
,
369
, pp.
50
62
. 10.1016/j.jsv.2015.11.048
27.
Rao
,
S. S.
,
2011
,
Mechanical Vibrations. Always Learning
, 5th ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
28.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
2004
,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
,
John Wiley & Sons
,
Weinheim
.
You do not currently have access to this content.