Abstract

Eigen-decomposition remains one of the most invaluable tools for signal processing algorithms. Although traditional algorithms based on QR decomposition, Jacobi rotations and block Lanczos tridiagonalization have been proposed to decompose a matrix into its eigenspace, associated computational expense typically hinders their implementation in a real-time framework. In this paper, we study recursive eigen perturbation (EP) of the symmetric eigenvalue problem of higher order (greater than one). Through a higher order perturbation approach, we improve the recently established first-order eigen perturbation (FOP) technique by creating a stabilization process for adapting to ill-conditioned matrices with close eigenvalues. Six algorithms were investigated in this regard: first-order, second-order, third-order, and their stabilized versions. The developed methods were validated and assessed on multiple structural health monitoring (SHM) problems. These were first tested on a five degrees-of-freedom (DOF) linear building model for accurate estimation of mode shapes in an automated framework. The separation of closely spaced modes was then demonstrated on a 3DOF + tuned mass damper (TMD) problem. Practical utility of the methods was probed on the Phase-I ASCE-SHM benchmark problem. The results obtained for real-time mode identification establishes the robustness of the proposed methods for a range of engineering applications.

References

1.
Nayfeh
,
A. H.
,
1981
,
Introduction to Perturbation Techniques
,
Wiley
,
Chichester, New York
.
2.
Hinch
,
E. J.
,
1995
,
Perturbation Methods
, 1st ed.,
Cambridge University Press
,
Cambridge
.
3.
Kato
,
T.
,
1976
,
Perturbation Theory for Linear Operators
, 2nd ed., Vol.
132
,
Springer-Verlag
,
Berlin
.
4.
Gershgorin
,
S.
,
1931
, “
Uber Die Abgrenzung Der Eigenwerte Einer Matrix
,”
Bull. Acad. Sci. URSS
,
1931
(
6
), pp.
749
754
.
5.
Bauer
,
F. L.
, and
Fike
,
C. T.
,
1960
, “
Norms and Exclusion Theorems
,”
Numerische Mathematik
,
2
(
1
), pp.
137
141
. 10.1007/BF01386217
6.
Golub
,
G. H.
, and
Van Der Vorst
,
H. A.
,
2000
, “
Eigenvalue Computation in the 20th Century
,”
J. Comput. Appl. Math.
,
123
(
1
), pp.
35
65
.
7.
Kato
,
T.
,
1949
, “
On the Upper and Lower Bounds of Eigenvalues
,”
J. Phys. Soc. Jpn.
,
4
(
4–6
), pp.
334
339
. 10.1143/JPSJ.4.334
8.
Temple
,
G.
,
1952
, “
The Accuracy of Rayleigh’s Method of Calculating the Natural Frequencies of Vibrating Systems
,”
Proc. R. Soc. Lond., Ser. A: Math. Phys. Sci.
,
211
(
1105
), pp.
204
224
.
9.
Davis
,
C.
, and
Kahan
,
W. M.
,
1970
, “
The Rotation of Eigenvectors by a Perturbation. III
,”
SIAM Rev.
,
7
(
1
), pp.
1
46
.
10.
Champagne
,
B.
,
1994
, “
Adaptive Eigendecomposition of Data Covariance Matrices Based on First-Order Perturbations
,”
IEEE Trans. Signal Process.
,
42
(
10
), pp.
2758
2770
. 10.1109/78.324741
11.
Abdi
,
H.
, and
Williams
,
L. J.
,
2010
, “
Principal Component Analysis
,”
Wiley Interdiscip. Rev.: Comput. Statist.
,
2
(
4
), pp.
433
459
. 10.1002/wics.101
12.
Garcia-Alvarez
,
D.
,
Fuente
,
M.
, and
Sainz
,
G.
,
2012
, “
Fault Detection and Isolation in Transient States Using Principal Component Analysis
,”
J. Process Control
,
22
(
3
), pp.
551
563
. 10.1016/j.jprocont.2012.01.007
13.
Erdogmus
,
D.
,
Rao
,
Y. N.
,
Peddaneni
,
H.
,
Hegde
,
A.
, and
Principe
,
J. C.
,
2004
, “
Recursive Principal Components Analysis Using Eigenvector Matrix Perturbation
,”
Eurasip J. Appl. Signal Process.
,
2004
(
13
), pp.
2034
2041
. 10.1155/s1110865704404120
14.
Krishnan
,
M.
,
Bhowmik
,
B.
,
Hazra
,
B.
, and
Pakrashi
,
V.
,
2018
, “
Real Time Damage Detection Using Recursive Principal Components and Time Varying Auto-Regressive Modeling
,”
Mech. Syst. Signal Process.
,
101
, pp.
549
574
. 10.1016/j.ymssp.2017.08.037
15.
Bhowmik
,
B.
,
Krishnan
,
M.
,
Hazra
,
B.
, and
Pakrashi
,
V.
,
2019
, “
Real-Time Unified Single- and Multi-Channel Structural Damage Detection Using Recursive Singular Spectrum Analysis
,”
Struct. Health Monit.
,
18
(
2
), pp.
563
589
. 10.1177/1475921718760483
16.
Rana
,
R.
, and
Soong
,
T. T.
,
1998
, “
Parametric Study and Simplified Design of Tuned Mass Dampers
,”
Eng. Struct.
,
20
(
3
), pp.
193
204
. 10.1016/s0141-0296(97)00078-3
17.
Johnson
,
E. A.
,
Lam
,
H. F.
,
Katafygiotis
,
L. S.
, and
Beck
,
J. L.
,
2004
, “
Phase I IASC-ASCE Structural Health Monitoring Benchmark Problem Using Simulated Data
,”
J. Eng. Mech.
,
130
(
1
), pp.
3
15
. 10.1061/(ASCE)0733-9399(2004)130:1(3)
18.
Cullum
,
J. K.
, and
Willoughby
,
R. A.
,
2002
,
Lanczos Algorithms for Large Symmetric Eigenvalue Computations: Vol. 1: Theory
,
SIAM
,
Philadelphia
.
19.
Watkins
,
D. S.
,
1982
, “
Understanding the QR Algorithm
,”
SIAM Rev.
,
24
(
4
), pp.
427
440
. 10.1137/1024100
20.
Cha
,
P. D.
, and
Shin
,
A.
,
2018
, “
Perturbation Methods for the Eigen Characteristics of Symmetric and Asymmetric Systems
,”
Shock Vib.
,
2018
, pp.
1
25
. 10.1155/2018/8609138
21.
Jeng
,
J. C.
,
2010
, “
Adaptive Process Monitoring Using Efficient Recursive PCA and Moving Window PCA Algorithms
,”
J. Taiwan Inst. Chem. Eng.
,
41
(
4
), pp.
475
481
. 10.1016/j.jtice.2010.03.015
22.
Chen
,
S. H.
,
Liu
,
Z. S.
,
Shao
,
C. S.
, and
Zhao
,
Y. Q.
,
1993
, “
Perturbation Analysis of Vibration Modes With Close Frequencies
,”
Commun. Numer. Methods Eng.
,
9
(
5
), pp.
427
438
. 10.1002/cnm.1640090508
23.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
1996
,
Matrix Computations
, 3rd ed.,
Johns Hopkins University Press
,
London; Baltimore, MD
.
24.
Parlett
,
B. N.
,
1980
,
The Symmetric Eigenvalue Problem
,
Prentice-Hall
,
London, Englewood Cliffs, NJ
.
25.
Wilkinson
,
J.
,
1968
, “
Almost Diagonal Matrices With Multiple or Close Eigenvalues
,”
Linear Algebra Appl.
,
1
(
1
), pp.
1
12
. 10.1016/0024-3795(68)90042-6
26.
Sameh
,
A. H.
,
1971
, “
On Jacobi and Jacobi-Like Algorithms for a Parallel Computer
,”
Am. Math. Soc.
,
25
(
115
), pp.
579
590
. 10.1090/s0025-5718-1971-0297131-6
27.
Stewart
,
G. W.
,
1973
, “
Error and Perturbation Bounds for Subspaces Associated With Certain Eigenvalue Problems
,”
SIAM Rev.
,
15
(
4
), pp.
727
764
. 10.1137/1015095
28.
Kilmer
,
M. E.
, and
O’Leary
,
D. P.
,
2010
,
G.W. Stewart
,
Birkhauser
,
Boston, MA
.
29.
Nakatsukasa
,
Y.
,
2012
, “
The Tan θ Theorem With Relaxed Conditions
,”
Linear Algebra Appl.
,
436
(
5
), pp.
1528
1534
. 10.1016/j.laa.2011.08.038
30.
Wilkinson
,
J. H.
,
1965
,
The Algebraic Eigenvalue Problem
,
Clarendon Press
,
Oxford
.
31.
Deif
,
A.
,
1995
, “
Rigorous Perturbation Bounds for Eigenvalues and Eigenvectors of a Matrix
,”
J. Comput. Appl. Math.
,
57
(
3
), pp.
403
412
. 10.1016/0377-0427(93)E0208-4
32.
Bhowmik
,
B.
,
Tripura
,
T.
,
Hazra
,
B.
, and
Pakrashi
,
V.
,
2019
, “
First Order Eigen Perturbation Techniques for Real Time Damage Detection of Vibrating Systems: Theory and Applications
,”
ASME Appl. Mech. Rev.
,
71
(
6
). 10.1115/1.4044287
33.
Allemang
,
R. J.
,
2003
, “
The Modal Assurance Criterion
,”
J. Sound Vib.
,
37
(
8
), pp.
14
21
.
34.
Mathias
,
R.
,
2005
, “
Accurate Eigensystem Computations by Jacobi Methods
,”
SIAM J. Matrix Anal. Appl.
,
16
(
3
), pp.
977
1003
. 10.1137/S089547989324820X
35.
Bhowmik
,
B.
,
Tripura
,
T.
,
Hazra
,
B.
, and
Pakrashi
,
V.
,
2020
, “
Real Time Structural Modal Identification Using Recursive Canonical Correlation Analysis and Application Towards Online Structural Damage Detection
,”
J. Sound Vib.
,
468
. 10.1016/j.jsv.2019.115101
36.
Caicedo
,
J. M.
,
2011
, “
Practical Guidelines for the Natural Excitation Technique (NExT) and the Eigensystem Realization Algorithm (ERA) for Modal Identification Using Ambient Vibration
,”
Exp. Tech.
,
35
(
4
), pp.
52
58
. 10.1111/j.1747-1567.2010.00643.x
37.
Harmouche
,
J.
,
Fourer
,
D.
,
Auger
,
F.
,
Borgnat
,
P.
, and
Flandrin
,
P.
,
2018
, “
The Sliding Singular Spectrum Analysis: A Data-Driven Nonstationary Signal Decomposition Tool
,”
IEEE Trans. Signal Process.
,
66
(
1
), pp.
251
263
. 10.1109/TSP.2017.2752720
38.
Blevins
,
M. M.
, and
Stewart
,
G. W.
,
1974
, “
Calculating the Eigenvectors of Diagonally Dominant Matrices
,”
J. ACM
,
21
(
2
), pp.
261
271
. 10.1145/321812.321821
39.
Barlow
,
J.
, and
Demmel
,
J.
,
1990
, “
Computing Accurate Eigensystems of Scaled Diagonally Dominant Matrices
,”
SIAM J. Numer. Anal.
,
27
(
3
), pp.
762
791
. 10.1137/0727045
40.
Anda
,
A. A.
, and
Park
,
H.
,
1994
, “
Fast Plane Rotations With Dynamic Scaling
,”
SIAM J. Matrix Anal. Appl.
,
15
(
1
), pp.
162
174
. 10.1137/S0895479890193017
41.
Demmel
,
J.
, and
Veselic
,
K.
,
1992
, “
Jacobi’s Method is More Accurate Than QR
,”
SIAM J. Matrix Anal. Appl.
,
13
(
4
), pp.
1204
1245
. 10.1137/0613074
You do not currently have access to this content.