Abstract

In this paper, we investigate numerically the coupling of the Rayleigh mode with the micro-wall resonance modes in inter-digital transducers (IDTs) electrodes of surface acoustic wave (SAW) devices. We perform a finite element analysis (FEA) of the SAW features using an implemented model using comsol Multiphysics® software. The SAW structure comprises identical transmitter and receiver IDTs electrodes, with different electrode heights (he). The proposed FEA study is based on the extraction of reflection (S11) and transmission (S21) coefficients of the SAW device. The IDTs are considered to be a micro-wall phononic crystal acting as local resonators at frequencies inside the SAW passband. The locally resonance gap is strongly dependent on the he value, and S11 and S21 parameters are affected by the SAW energy absorption in the IDTs system. We have chosen two he values (0.5 and 3 µm) to study low and high aspect ratios of micro-walls, corresponding respectively to Bragg-type and resonance-type bandgaps appearing near the SAW central frequency. At the SAW resonance frequency, the return (S11) and the insertion (S21) losses are reduced. S21 is reduced by 12.73 and 18.49 dB for he = 0.5 and 3 µm, respectively, accompanied by an increase in the quality factor, and S11 parameter is reduced by 1.357 and 4.98 dB for he = 0.5 and 3 µm, respectively.

References

1.
Yantchev
,
V.
, and
Plessky
,
V.
,
2014
, “
Phononic SAW Transducers With Complete Frequency Bandgap Characteristics
,”
IEEE International Frequency Control Symposium (FCS)
,
Taipei, Taiwan
, IEEE, pp.
1
2
.
2.
Darinskii
,
A. N.
,
Weihnacht
,
M.
, and
Schmidt
,
H.
,
2010
, “
Surface Acoustic Wave Scattering From Steps, Grooves, and Strips on Piezoelectric Substrates
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
57
(
9
), pp.
2042
2050
. 10.1109/TUFFC.2010.1652
3.
Hashimoto
,
K. Y.
, and
Hashimoto
,
K. Y.
,
2000
,
Surface Acoustic Wave Devices in Telecommunications
,
Springer
,
Berlin
.
4.
Suchkov
,
S.
,
Yankin
,
S.
,
Nikitov
,
S.
,
Sveshnikov
,
B.
, and
Shatrova
,
Y.
,
2013
, “
Propagation and Reflection of Surface Acoustic Waves in the System of Topographic Irregularities Comparable With the Wavelength
,”
Proceedings of the International Congress on Ultrasonics (ICU 2013)
, pp.
876
881
.
5.
Lehtonen
,
S.
,
Plessy
,
V. P.
,
Bereux
,
N.
, and
Salomaa
,
M. M.
,
2004
, “
Minimum-Loss Short Reflectors on 128/spl deg/LiNbO/Sub 3
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
51
(
10
), pp.
1203
1205
. 10.1109/TUFFC.2004.1350945
6.
Hohmann
,
S.
,
Kögel
,
S.
,
Brunner
,
Y.
,
Schmieg
,
B.
,
Ewald
,
C.
,
Kirschhöfer
,
F.
,
Brenner-Weiß
,
G.
, and
Länge
,
K.
,
2015
, “
Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation
,”
Sensors
,
15
(
5
), pp.
11873
11888
. 10.3390/s150511873
7.
Serhane
,
R.
,
Hadj-Larbi
,
F.
,
Hassein-Bey
,
A.
, and
Khelif
,
A.
,
2018
, “
Selective Band Gap to Suppress the Spurious Acoustic Mode in Film Bulk Acoustic Resonator Structures
,”
ASME J. Vib. Acoust.
,
140
(
3
), p.
031018
. 10.1115/1.4038944
8.
Schweber
,
B.
,
2015
, “
SAW Filters Rescue Wireless Products from ImpracticalDiscrete Implementations
,” Electronic Products Magazine, https://www.digikey.be/nl/articles/saw-filters-rescue-wireless-products-from-impractical-discrete-implementations
9.
Viikari
,
V.
,
Kokkonen
,
K.
,
Meltaus
,
J.
, and
Seppa
,
H.
,
2009
, “
Estimator for Reflective Delay Line-Type SAW Sensors
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
56
(
6
), pp.
1277
1281
. 10.1109/TUFFC.2009.1170
10.
Ruppel
,
C. C.
,
Reindl
,
L.
, and
Weigel
,
R.
,
2002
, “
SAW Devices and Their Wireless Communications Applications
,”
IEEE Microwave Mag.
,
3
(
2
), pp.
65
71
. 10.1109/MMW.2002.1004053
11.
Reindl
,
L.
,
Scholl
,
G.
,
Ostertag
,
T.
,
Ruppel
,
C. C. W.
,
Bulst
,
W. E.
, and
Seifert
,
F.
,
1996
, “
SAW Devices as Wireless Passive Sensors
,”
Proceedings of IEEE Ultrasonics Symposium
,
San Antonio, TX
, Vol.
1
, pp.
363
367
.
12.
Plessky
,
V. P.
, and
Reindl
,
L. M.
,
2010
, “
Review on SAW RFID Tags
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
57
(
3
), pp.
654
668
. 10.1109/TUFFC.2010.1462
13.
Kang
,
A.
,
Zhang
,
C.
,
Ji
,
X.
,
Han
,
T.
,
Li
,
R.
, and
Li
,
X.
,
2013
, “
SAW-RFID Enabled Temperature Sensor
,”
Sens. Actuators, A
,
201
, pp.
105
113
. 10.1016/j.sna.2013.06.016
14.
Uno
,
T.
, and
Jumonji
,
H.
,
1982
, “
Optimization of Quartz SAW Resonator Structure With Groove Gratings
,”
IEEE Trans. Sonics Ultrason.
,
29
(
6
), pp.
299
309
. 10.1109/T-SU.1982.31358
15.
Malfanti
,
I.
,
Taschin
,
A.
,
Bartolini
,
P.
,
Bonello
,
B.
, and
Torre
,
R.
,
2011
, “
Propagation of Acoustic Surface Waves on a Phononic Surface Investigated by Transient Reflecting Grating Spectroscopy
,”
J. Mech. Phys. Solids
,
59
(
11
), pp.
2370
2381
. 10.1016/j.jmps.2011.07.010
16.
Wu
,
T. T.
,
Wang
,
W. S.
, and
Sun
,
J. H.
,
2008
, “
A Layered SAW Device Using Phononic-Crystal Reflective Gratings
,”
IEEE Ultrasonics Symposium
,
Beijing, China
, pp.709–712.
17.
Lucklum
,
R.
,
Zubtsov
,
M.
,
Oseev
,
A.
,
Schmidt
,
M. P.
, and
Hirsch
,
S.
,
2016
, “
SAW Based Sandwich Phononic Crystal Sensor
,”
Procedia Eng.
,
168
, pp.
700
703
. 10.1016/j.proeng.2016.11.251
18.
Krushynska
,
A. O.
,
Miniaci
,
M.
,
Bosia
,
F.
, and
Pugno
,
N. M.
,
2017
, “
Coupling Local Resonance With Bragg Band Gaps in Single-Phase Mechanical Metamaterials
,”
Extreme Mech. Lett.
,
12
, pp.
30
36
. 10.1016/j.eml.2016.10.004
19.
Shao
,
L.
,
Maity
,
S.
,
Zheng
,
L.
,
Wu
,
L.
,
Shams-Ansari
,
A.
,
Sohn
,
Y. I.
,
Puma
,
E.
,
Gadalla
,
M. N.
,
Zhang
,
M.
,
Wang
,
C.
,
Hu
,
E.
,
Lai
,
K.
, and
Lončar
,
M.
,
2019
, “
Phononic Band Structure Engineering for High-Q Gigahertz Surface Acoustic Wave Resonators on Lithium Niobate
,”
Phys. Rev. Appl.
,
12
(
1
), p.
014022
. 10.1103/PhysRevApplied.12.014022
20.
Deymier
,
P. A.
,
2013
,
Acoustic Metamaterials and Phononic Crystals
, Vol.
173
,
Springer Science & Business Media
,
Springer/Heidelberg/New York/Dordrecht/London
.
21.
Khelif
,
A.
, and
Adibi
,
A.
,
2016
,
Crystals, Phononic. Fundamentals and Applications
,
Springer Science
,
Springer Heidelberg New York, Dordrecht, London
.
22.
Khelif
,
A.
,
Achaoui
,
Y.
,
Benchabane
,
S.
,
Laude
,
V.
, and
Aoubiza
,
B.
,
2010
, “
Locally Resonant Surface Acoustic Wave Band Gaps in a Two-Dimensional Phononic Crystal of Pillars on a Surface
,”
Phys. Rev. B
,
81
(
21
), p.
214303
. 10.1103/PhysRevB.81.214303
23.
Khelif
,
A.
,
Achaoui
,
Y.
, and
Aoubiza
,
B.
,
2012
, “
Surface Acoustic Waves in Pillars-Based Two-Dimensional Phononic Structures With Different Lattice Symmetries
,”
J. Appl. Phys.
,
112
(
3
), p.
033511
. 10.1063/1.4737780
24.
Júnior
,
M.
, and
Dos Santos
,
J. M. C.
,
2017
, “
Complete Band Gaps in Two-Dimensional Magnetoelectroelastic Phononic Crystals
,”
International Conference on Structural Engineering Dynamics (ICEDyn)
,
Ericeira, Portugal
, pp.
1
17
.
25.
Khelif
,
A.
,
Aoubiza
,
B.
,
Mohammadi
,
S.
,
Adibi
,
A.
, and
Laude
,
V.
,
2006
, “
Complete Band Gaps in Two-Dimensional Phononic Crystal Slabs
,”
Phys. Rev. E
,
74
(
4
), p.
046610
. 10.1103/PhysRevE.74.046610
26.
Achaoui
,
Y.
,
Laude
,
V.
,
Benchabane
,
S.
, and
Khelif
,
A.
,
2013
, “
Local Resonances in Phononic Crystals and in Random Arrangements of Pillars on a Surface
,”
J. Appl. Phys.
,
114
(
10
), p.
104503
. 10.1063/1.4820928
27.
Wootton
,
P. T.
,
Kaplunov
,
J.
, and
Colquitt
,
D. J.
,
2019
, “
An Asymptotic Hyperbolic-Elliptic Model for Flexural-Seismic Metasurfaces
,”
Proc. R. Soc. A
,
475
(
2227
), p.
20190079
. 10.1098/rspa.2019.0079
28.
Achaoui
,
Y.
,
Khelif
,
A.
,
Benchabane
,
S.
,
Robert
,
L.
, and
Laude
,
V.
,
2011
, “
Experimental Observation of Locally-Resonant and Bragg Band Gaps for Surface Guided Waves in a Phononic Crystal of Pillars
,”
Phys. Rev. B
,
83
(
10
), p.
104201
. 10.1103/PhysRevB.83.104201
29.
Craster
,
R. V.
, and
Guenneau
,
S.
,
2013
,
Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking
, Vol.
166
,
Springer Science & Business Media
,
Springer, The Netherlands
.
30.
Laude
,
V.
,
Robert
,
L.
,
Daniau
,
W.
,
Khelif
,
A.
, and
Ballandras
,
S.
,
2006
, “
Surface Acoustic Wave Trapping in a Periodic Array of Mechanical Resonators
,”
Appl. Phys. Lett.
,
89
(
8
), p.
083515
. 10.1063/1.2338523
31.
Ramakrishnan
,
N.
,
Nemade
,
H. B.
, and
Palathinkal
,
R. P.
,
2013
,
Advanced Nanomaterials and Nanotechnology
,
Springer
,
Berlin, Heidelberg
, pp.
531
538
.
32.
Colquitt
,
D.
,
Colombi
,
A.
,
Craster
,
R.
,
Roux
,
P.
, and
Guenneau
,
S.
,
2017
, “
Seismic Metasurfaces: Sub-Wavelength Resonators and Rayleigh Wave Interaction
,”
J. Mech. Phys. Solids
,
99
, pp.
379
393
. 10.1016/j.jmps.2016.12.004
33.
Royer
,
D.
, and
Dieulesaint
,
E.
,
1999
,
Elastic Waves in Solids II: Generation, Acousto-Optic Interaction, Applications
,
Springer Science & Business Media
,
Springer-Verlag Berlin, Heidelberg/New York
.
You do not currently have access to this content.