Abstract

Dynamic modeling of spacecraft structures is imperative to their successful design for flight missions. A large number of these structures’ dry mass consists of signal and power cables, dynamics of which is not well-predicted using ad hoc cable lumped mass models. Hence, accurate modeling techniques are required to understand these cable dynamics effects. In the past, efforts toward developing analytical models for cable-harnessed structures have been primarily focused on beam-like host structures. The presented paper is aimed to fill this gap by obtaining analytical solutions through an energy-equivalent homogenization approach for cable-harnessed plate-like structures and to ultimately help with understanding the dynamic effects of signal and power cables on two-dimensional plate-like structures. As a first step, systems of periodic geometries with parallel cable configurations are considered. The strain and kinetic energy expressions for the fundamental repeated elements are found using linear displacement fields and Green–Lagrange strain tensors. The governing partial differential equation (PDE) for the out-of-plane motion of the cable-harnessed system is then found using Hamilton’s principle. Experimental modal testing is performed for the purpose of validations of the frequency response functions (FRFs) obtained from the model for the cable-harnessed plates under clamped-free-free-free boundary conditions. The results clearly show the dynamic effects of the (CFFF) cables which are also well-predicted by the model. Finally, modal assurance criterion (MAC) analysis has been used for further validations of the mode shapes obtained from the model.

References

1.
Babuška
,
V.
,
Coombs
,
D. M.
,
Goodding
,
J. C.
,
Ardelean
,
E. V.
,
Robertson
,
L. M.
, and
Lane
,
S. A.
,
2010
, “
Modeling and Experimental Validation of Space Structures With Wiring Harnesses
,”
J. Spacecr. Rockets
,
47
(
6
), pp.
1038
1052
. 10.2514/1.48078
2.
Spak
,
K. S.
,
Agnes
,
G. S.
, and
Inman
,
D. J.
,
2015
, “
Modeling Vibration Response and Damping of Cables and Cabled Structures
,”
J. Sound Vib.
,
336
, pp.
240
256
. 10.1016/j.jsv.2014.10.009
3.
Martin
,
B.
, and
Salehian
,
A.
,
2013
, “
Cable-Harnessed Space Structures: A Beam-Cable Approach
,”
24th International Association of Science and Technology for Development International Conference on Modelling and Simulation
,
Banff, AB, Canada
,
July 17–19
, pp.
17
19
.
4.
Choi
,
J.
, and
Inman
,
D.
,
2013
, “
Development of Predictive Modeling for Cable Harnessed Structure
,”
54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Boston, MA
,
Apr. 8–13
, p.
1888
.
5.
Choi
,
J.
, and
Inman
,
D. J.
,
2014
, “
Spectrally Formulated Modeling of a Cable-Harnessed Structure
,”
J. Sound Vib.
,
333
(
14
), pp.
3286
3304
. 10.1016/j.jsv.2014.03.020
6.
Huang
,
Y.-X.
,
Tian
,
H.
, and
Zhao
,
Y.
,
2016
, “
Effects of Cable on the Dynamics of a Cantilever Beam With Tip Mass
,”
Shock Vib.
,
2016
(Article ID 7698729), pp.
1
10
. 10.1155/2016/7698729
7.
Yerrapragada
,
K.
, and
Salehian
,
A.
,
2019
, “
Analytical Study of Coupling Effects for Vibrations of Cable-Harnessed Beam Structures
,”
ASME J. Vib. Acoust.
,
141
(
3
), p.
031001
. 10.1115/1.4042042
8.
Martin
,
B.
, and
Salehian
,
A.
,
2013
, “
Vibration Analysis of String-Harnessed Beam Structures: A Homogenization Approach
,”
54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Boston, MA
,
Apr. 8–13
, p.
1892
. 10.2514/6.2013-1892
9.
Martin
,
B.
, and
Salehian
,
A.
,
2014
, “
Vibration Modelling of String-Harnessed Beam Structures Using Homogenization Techniques
,”
ASME 2014 International Mechanical Engineering Congress and Exposition
,
Montreal, QC, Canada
,
Nov. 14–20
, p.
V04BT04A074
.
10.
Martin
,
B.
, and
Salehian
,
A.
,
2016
, “
Mass and Stiffness Effects of Harnessing Cables on Structural Dynamics: Continuum Modeling
,”
AIAA J.
,
54
(
9
), pp.
2881
2904
. 10.2514/1.J054156
11.
Martin
,
B.
, and
Salehian
,
A.
,
2016
, “
Homogenization Modeling of Periodically Wrapped String-Harnessed Beam Structures: Experimental Validation
,”
AIAA J.
,
54
(
12
), pp.
3965
3980
. 10.2514/1.J055134
12.
Martin
,
B.
, and
Salehian
,
A.
,
2019
, “
Continuum Modeling of Nonperiodic String-Harnessed Structures: Perturbation Theory and Experiments
,”
AIAA J.
,
57
(
4
), pp.
1736
1751
. 10.2514/1.J056615
13.
Martin
,
B.
, and
Salehian
,
A.
,
2013
, “
Dynamic Modelling of Cable-Harnessed Beam Structures With Periodic Wrapping Patterns: A Homogenization Approach
,”
Int. J. Model. Simul.
,
33
(
4
), pp.
185
202
. 10.2316/Journal.205.2013.4.205-5981
14.
Coombs
,
D. M.
,
Goodding
,
J. C.
,
Babuška
,
V.
,
Ardelean
,
E. V.
,
Robertson
,
L. M.
, and
Lane
,
S. A.
,
2011
, “
Dynamic Modeling and Experimental Validation of a Cable-Loaded Panel
,”
J. Spacecr. Rockets
,
48
(
6
), pp.
958
973
. 10.2514/1.51021
15.
Remedia
,
M.
,
Aglietti
,
G. S.
, and
Richardson
,
G.
,
2015
, “
Modelling the Effect of Electrical Harness on Microvibration Response of Structures
,”
Acta Astronaut.
,
109
, pp.
88
102
. 10.1016/j.actaastro.2014.12.017
16.
Robertson
,
L.
,
Lane
,
S.
,
Ingram
,
B.
,
Hansen
,
E.
,
Babuska
,
V.
,
Goodding
,
J.
,
Mimovich
,
M.
,
Mehle
,
G.
,
Coombs
,
D.
, and
Ardelean
,
E.
,
2007
, “
Cable Effects on the Dynamics of Large Precision Structures
,”
48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Honolulu, HI
,
Apr. 23–26
, p.
2389
.
17.
Goodding
,
J.
,
Babuska
,
V.
,
Griffith
,
D. T.
,
Ingram
,
B.
, and
Robertson
,
L.
,
2007
, “
Studies of Free-Free Beam Structural Dynamics Perturbations Due to Mounted Cable Harnesses
,”
48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Honolulu, HI
,
Apr. 23–26
, p.
2390
.
18.
Goodding
,
J. C.
,
Ardelean
,
E. V.
,
Babuska
,
V.
,
Robertson
,
L. M.
, and
Lane
,
S. A.
,
2011
, “
Experimental Techniques and Structural Parameter Estimation Studies of Spacecraft Cables
,”
J. Spacecr. Rockets
,
48
(
6
), pp.
942
957
. 10.2514/1.49346
19.
Spak
,
K.
,
Agnes
,
G.
, and
Inman
,
D.
,
2013
, “
Cable Modeling and Internal Damping Developments
,”
ASME Appl. Mech. Rev.
,
65
(
1
), p.
010801
. 10.1115/1.4023489
20.
Spak
,
K.
,
Agnes
,
G.
, and
Inman
,
D.
,
2014
, “
Parameters for Modeling Stranded Cables as Structural Beams
,”
Exp. Mech.
,
54
(
9
), pp.
1613
1626
. 10.1007/s11340-014-9941-8
21.
Spak
,
K. S.
,
Agnes
,
G. S.
, and
Inman
,
D.
,
2013
, “
Towards Modeling of Cable-Harnessed Structures: Cable Damping Experiments
,”
54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Boston, MA
,
Apr. 8–13
, p.
1889
.
22.
Lesieutre
,
G. A.
,
2010
, “
Frequency-Independent Modal Damping for Flexural Structures via a Viscous” Geometric” Damping Model
,”
J. Guidance Control Dyn.
,
33
(
6
), pp.
1931
1935
. 10.2514/1.49864
23.
McPherson
,
B. N.
,
Lesieutre
,
G. A.
, and
Kauffman
,
J. L.
,
2018
, “
Investigation of Viscous Damping Terms for a Timoshenko Beam
,”
2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Kissimmee, FL
,
Jan. 8–12
, p.
0456
.
24.
Kauffman
,
J. L.
, and
Lesieutre
,
G. A.
,
2013
, “
Damping Models for Timoshenko Beams With Applications to Spacecraft Wiring Harnesses
,”
54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Boston, MA
,
Apr. 8–13
, p.
1890
.
25.
Lesieutre
,
G. A.
, and
Kauffman
,
J. L.
,
2013
, “
‘Geometric’ Viscous Damping Model for Nearly Constant Beam Modal Damping
,”
AIAA J.
,
51
(
7
), pp.
1688
1694
. 10.2514/1.J052174
26.
Kauffman
,
J. L.
,
Lesieutre
,
G. A.
, and
Babuška
,
V.
,
2014
, “
Damping Models for Shear Beams With Applications to Spacecraft Wiring Harnesses
,”
J. Spacecr. Rockets
,
51
(
1
), pp.
16
22
. 10.2514/1.A32440
27.
Yerrapragada
,
K.
, and
Salehian
,
A.
,
2019
, “
Coupled Dynamics of Cable-Harnessed Structures: Experimental Validation
,”
ASME J. Vib. Acoust.
,
141
(
6
), p.
061001
. 10.1115/1.4043990
28.
Agrawal
,
P.
, and
Salehian
,
A.
,
2021
, “
Damping Mechanisms in Cable-Harnessed Structures for Space Applications: Analytical Modeling
,”
ASME J. Vib. Acoust.
,
143
(
2
), p.
021001
. 10.1115/1.4047881
29.
Agrawal
,
P.
, and
Salehian
,
A.
,
2021
, “
Damping Mechanisms in Cable-Harnessed Structures for Space Applications: Experimental Validation
,”
ASME J. Vib. Acoust.
,
143
(
2
), p.
024502
. 10.1115/1.4048391
30.
Agrawal
,
P.
, and
Salehian
,
A.
,
2019
, “
Vibration Analysis of Cable-Harnessed Plate Structures
,”
Proceedings of the 26th International Congress on Sound and Vibration, ICSV 2019
,
Montreal, QC, Canada
,
July 7–11
, pp.
1
8
.
31.
Cao
,
S.
,
Agrawal
,
P.
,
Qi
,
N.
, and
Salehian
,
A.
,
2021
, “
Optimal Geometry for Cable Wrapping to Minimize Dynamic Impacts on Cable-Harnessed Beam Structures
,”
ASME J. Vib. Acoust.
,
143
(
4
), p.
041005
. 10.1115/1.4048888
32.
Hans
,
S.
, and
Boutin
,
C.
,
2008
, “
Dynamics of Discrete Framed Structures: A Unified Homogenized Description
,”
J. Mech. Mater. Struct.
,
3
(
9
), pp.
1709
1739
. 10.2140/jomms.2008.3.1709
33.
Isola
,
F.
,
Giorgio
,
I.
,
Pawlikowski
,
M.
,
Rizzi
,
N. L.
,
Strutturale
,
I.
, and
Giorgio
,
I.
,
2016
, “
Large Deformations of Planar Extensible Beams and Pantographic Lattices: Heuristic Homogenization, Experimental and Numerical Examples of Equilibrium
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
472
(
2185
), p.
20150790
. 10.1098/rspa.2015.0790
34.
Giorgio
,
I.
,
Rizzi
,
N. L.
, and
Turco
,
E.
,
2017
, “
Continuum Modelling of Pantographic Sheets for Out-of-Plane Bifurcation and Vibrational Analysis
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
473
(
2207
), p.
20170636
. 10.1098/rspa.2017.0636
35.
Abdoul-Anziz
,
H.
, and
Seppecher
,
P.
,
2018
, “
Strain Gradient and Generalized Continua Obtained by Homogenizing Frame Lattices
,”
Math. Mech. Complex Syst.
,
6
(
3
), pp.
213
250
. 10.2140/memocs.2018.6.213
36.
Rao
,
S. S.
,
2007
,
Vibration of Continuous Systems
,
Wiley
,
New York
.
37.
Reddy
,
J. N.
,
2006
,
Theory and Analysis of Elastic Plates and Shells
,
CRC Press
,
Boca Raton, FL
.
38.
Timoshenko
,
S. P.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
39.
Jones
,
R. M.
,
2014
,
Mechanics of Composite Materials
,
CRC Press
,
Boca Raton, FL
.
40.
Reddy
,
J. N.
,
2003
,
Mechanics of Laminated Composite Plates and Shells: Theory and Analysis
,
CRC Press
,
Boca Raton, FL
.
41.
Martin
,
B.
,
2017
, “
Continuum Modelling and Vibration Analysis of String-Harnessed Structures
,” Ph.D. dissertation,
University of Waterloo
,
Waterloo, ON, Canada
.
42.
Xiang-sheng
,
C.
,
1990
, “
On Buckling of Cantilever Rectangular Plates Under Symmetrical Edge Loading
,”
Appl. Math. Mech.
,
11
(
4
), pp.
377
383
. 10.1007/BF02015121
You do not currently have access to this content.