Abstract

In-line inspection (ILI) is a non-destructive assessment method commonly used for defect assessment and for pipeline monitoring. Passing an ILI tool through an excavated or exposed section of a pipe during an integrity assessment can excite vibrations. The ILI tool’s weight and speed can exert substantial forces, stresses, and deflections on the pipe section. When the excitation frequency from the ILI tool’s movement is close to the pipe’s natural frequency, the dynamic stress generated within the pipe can become great enough that it creates integrity concerns on the pipeline. This research aims to study the effects of an ILI tool’s passage through exposed and partially supported pipes under a variety of boundary and loading conditions. A finite element model of an exposed pipe section is developed based on the Timoshenko beam theory to predict the pipe’s displacement, strain, stress, and frequency responses under a wide range of excitation frequencies. The model is further validated using a lab-scale experimental setup with a mass that moves at different speeds. A comparison between the simulation and the experimental results shows that the proposed model can effectively predict the pipe’s dynamics.

References

1.
Michaltsos
,
G. T.
, and
Kounadis
,
A. N.
,
2001
, “
The Effects of Centripetal and Coriolis Forces on the Dynamic Response of Light Bridges Under Moving Loads
,”
J. Vib. Control
,
7
(
3
), pp.
315
326
. 10.1177/107754630100700301
2.
Oguamanam
,
D. C. D.
,
Hansen
,
J. S.
, and
Heppler
,
G. R.
,
1998
, “
Dynamic Response of an Overhead Crane System
,”
J. Sound Vib.
,
213
(
5
), pp.
889
906
. 10.1006/jsvi.1998.1564
3.
Lin
,
Y. H.
,
Trethewey
,
M. W.
,
Reed
,
H. M.
,
Shawley
,
J. D.
, and
Sager
,
S. J.
,
1990
, “
Dynamic Modelling and Analysis of a High Speed Precision Drilling Machine
,”
ASME J. Vib. Acoust.
,
112
(
3
), pp.
355
365
. 10.1115/1.2930516
4.
Lesmez
,
M. W.
,
Wiggert
,
D. C.
, and
Hatfield
,
F. J.
,
1990
, “
Modal Analysis of Vibrations in Liquid-Filled Piping Systems
,”
ASME J. Fluids Eng.
,
112
(
3
), pp.
311
318
. 10.1115/1.2909406
5.
Azam
,
S. E.
,
Mofid
,
M.
, and
Khoraskani
,
R. A.
,
2013
, “
Dynamic Response of Timoshenko Beam Under Moving Mass
,”
Scientia Iranica
,
20
(
1
), pp.
50
56
. 10.1016/j.scient.2012.11.003
6.
Zibdeh
,
H. S.
, and
Rachwitz
,
R.
,
1996
, “
Moving Loads on Beams With General Boundary Conditions
,”
J. Sound Vib.
,
195
(
1
), pp.
85
102
. 10.1006/jsvi.1996.0405
7.
Esmailzadeh
,
E.
, and
Ghorashi
,
M.
,
1995
, “
Vibration Analysis of Beams Traversed by Uniform Partially Distributed Moving Masses
,”
J. Sound Vib.
,
184
(
1
), pp.
9
17
. 10.1006/jsvi.1995.0301
8.
Valle
,
J.
,
Fernández
,
D.
, and
Madrenas
,
J.
,
2019
, “
Closed-Form Equation for Natural Frequencies of Beams Under Full Range of Axial Loads Modeled With a Spring-Mass System
,”
Int. J. Mech. Sci.
,
153–154
, pp.
380
390
. 10.1016/j.ijmecsci.2019.02.014
9.
Fryba
,
L.
,
1999
,
Vibration of Solids and Structures Under Moving Loads
, 3rd ed.,
Thomas Telford Ltd.
,
London, UK
.
10.
Dmitriev
,
A. S.
,
1977
, “
Transverse Vibrations of a Two-Span Beam with Elastic Central Support Under the Action of a Moving Point Force
,”
Int. Appl. Mech.
,
13
(
11
), pp.
1160
1163
. 10.1007/bf00941545
11.
Yang
,
Y.
,
Ding
,
H.
, and
Chen
,
L. Q.
,
2013
, “
Dynamic Response to a Moving Load of a Timoshenko Beam Resting on a Nonlinear Viscoelastic Foundation
,”
Acta Mech. Sin.
,
29
(
5
), pp.
718
727
. 10.1007/s10409-013-0069-3
12.
Nikkhoo
,
A.
, and
Kananipour
,
H.
,
2014
, “
Numerical Solution for Dynamic Analysis of Semicircular Curved Beams Acted upon by Moving Loads
,”
Part C: Journal of Mechanical Engineering Science
,
228
(
13
), pp.
2314
2322
. 10.1177/0954406213518908
13.
Wu
,
J. J.
,
Whittaker
,
A. R.
, and
Cartmell
,
M. P.
,
2001
, “
Dynamic Responses of Structures to Moving Bodies Using Combined Finite Element and Analytical Methods
,”
Int. J. Mech. Sci.
,
43
(
11
), pp.
2555
2579
. 10.1016/S0020-7403(01)00054-6
14.
Strutt
,
J. W.
, and
Rayleigh
,
B.
,
1945
,
The Theory of Sound
, 2nd ed.,
Dover Publications
,
New York
.
15.
Wu
,
J. S.
,
2013
,
Analytical and Numerical Methods for Vibration Analyses
, 1st ed.,
John Wiley & Sons
,
Singapore
.
16.
Cowper
,
G. R.
,
1966
, “
The Shear Coefficient in Timoshenko's Beam Theory
,”
ASME J. Appl. Mech.
,
33
(
2
), pp.
335
340
. 10.1115/1.3625046
17.
Ting
,
E. C.
,
Genin
,
J.
, and
Ginsberg
,
J. H.
,
1974
, “
A General Algorithm for Moving Mass Problems
,”
J. Sound Vib.
,
33
(
1
), pp.
49
58
. 10.1016/S0022-460X(74)80072-6
18.
Alliance
,
A. L.
,
2001
, Guidelines for the Design of Buried Steel Pipe, American Society of Civil Engineers.
19.
Peng
,
L. C.
,
1978
, “
Stress Analysis Methods for Underground Pipelines
,”
Pipe Line Industry
,
47
(
5
), pp.
65
74
.
20.
Segerlind
,
L. J.
,
1984
,
Applied Finite Element Analysis
, 2nd ed,
John Wiley & Sons
,
New York
.
21.
Newmark
,
N. M.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
ASCE J. Eng. Mech. Division
,
85
(
3
), pp.
67
94
.
22.
Budynas
,
R. G.
, and
Nisbett
,
J. K.
,
2008
,
Shigley's Mechanical Engineering Design
, Vol.
8
,
McGraw-Hill
,
New York
.
23.
Bay
,
H.
,
Ess
,
A.
,
Tuytelaars
,
T.
, and
Van Gool
,
L.
,
2008
, “
Speeded-Up Robust Features (SURF)
,”
Comput. Vis. Image Underst.
,
110
(
3
), pp.
346
359
. 10.1016/j.cviu.2007.09.014
You do not currently have access to this content.