Abstract

In this paper, the nonlinear modeling of beam energy harvester embedded with piezoelectric transducers is presented. Starting from a multibody dynamics perspective, a fully coupled electromechanical nonlinear beam model was derived and a geometrically exact finite volume beam element, including the circuit equation is developed. In this model, the beam resultants-strain constitutive law and mass properties are obtained from a two-dimensional beam cross-sectional modeling in which the electromechanical coupling effects are included. The results are verified against numerical and experimental results reported in the literature.

References

1.
Wang
,
Y.
, and
Inman
,
D. J.
,
2013
, “
Simultaneous Energy Harvesting and Gust Alleviation for a Multifunctional Composite Wing Spar Using Reduced Energy Control Via Piezoceramics
,”
J. Compos. Mater.
,
47
(
1
), pp.
125
146
. 10.1177/0021998312448677
2.
Roundy
,
S.
, and
Wright
,
P. K.
,
2004
, “
A Piezoelectric Vibration Based Generator for Wireless Electronics
,”
Smart Mater. Struct.
,
13
(
5
), p.
1131
. 10.1088/0964-1726/13/5/018
3.
Wang
,
G.
,
2013
, “
Analysis of Bimorph Piezoelectric Beam Energy Harvesters Using Timoshenko and Euler–Bernoulli Beam Theory
,”
J. Intell. Mater. Syst. Struct.
,
24
(
2
), pp.
226
239
. 10.1177/1045389X12461080
4.
Sodano
,
H. A.
,
Park
,
G.
, and
Inman
,
D.
,
2004
, “
Estimation of Electric Charge Output for Piezoelectric Energy Harvesting
,”
Strain
,
40
(
2
), pp.
49
58
. 10.1111/j.1475-1305.2004.00120.x
5.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
,
Piezoelectric Energy Harvesting
,
John Wiley & Sons
,
Chichester, UK
.
6.
Hajheidari
,
P.
,
Stiharu
,
I.
, and
Bhat
,
R.
,
2019
, “
Analysis of Bimorph Piezoelectric Beam Energy Harvesters Using Superconvergent Element
,”
J. Intell. Mater. Syst. Struct.
,
30
(
15
), pp.
2299
2313
. 10.1177/1045389X19862360
7.
Vieira
,
W.
,
Nitzsche
,
F.
, and
De Marqui Jr
,
C.
,
2012
, “
Modeling and Analysis of Piezoelectric Energy Harvesting From Helicopter Blades
,”
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Honolulu, HI
,
Apr. 23–26
.
8.
Tsushima
,
N.
, and
Su
,
W.
,
2016
, “
Modeling of Highly Flexible Multifunctional Wings for Energy Harvesting
,”
J. Aircr.
,
53
(
4
), pp.
1033
1044
. 10.2514/1.C033496
9.
Hosking
,
N.
, and
Sotoudeh
,
Z.
,
2019
, “
Comprehensive Analysis of Smart Beams
,”
AIAA J
,
57
(
1
), pp.
408
420
. 10.2514/1.J056771
10.
Asdaque
,
P. M. G. B.
,
Banerjee
,
S.
, and
Roy
,
S.
,
Jan., 2019
, “
An Electromechanically Coupled Intrinsic, Mixed Variational Formulation for Geometrically Nonlinear Smart Composite Beam
,”
Appl. Math. Model.
,
65
, pp.
549
565
. 10.1016/j.apm.2018.08.023
11.
Asdaque
,
P. B.
, and
Roy
,
S.
,
2019
, “
Nonlinear Dynamic Analysis of Slender, Composite Smart-structures Under Fixed and Follower Loads
,”
Composite Struct.
,
227
, p.
111269
. 10.1016/j.compstruct.2019.111269
12.
Ghiringhelli
,
G. L.
,
Masarati
,
P.
, and
Mantegazza
,
P.
,
1997
, “
Characterisation of Anisotropic, Non-homogeneous Beam Sections with Embedded Piezo-Electric Materials
,”
J. Intell. Mater. Syst. Struct.
,
8
(
10
), pp.
842
858
. 10.1177/1045389X9700801004
13.
Roy
,
S.
, and
Yu
,
W.
,
2009
, “
A Coupled Timoshenko Model for Smart Slender Structures
,”
Int. J. Solids. Struct.
,
46
(
13
), pp.
2547
2555
. 10.1016/j.ijsolstr.2009.01.029
14.
Zhu
,
W.
, and
Morandini
,
M.
,
2020
, “
Multiphysics Cross-Section Analysis of Smart Beams
,”
Mech. Adv. Mater. Struct.
, pp.
1
18
.
15.
Cottone
,
F.
,
Gammaitoni
,
L.
,
Vocca
,
H.
,
Ferrari
,
M.
, and
Ferrari
,
V.
,
2012
, “
Piezoelectric Buckled Beams for Random Vibration Energy Harvesting
,”
Smart Mater. Struct.
,
21
(
3
), p.
035021
. 10.1088/0964-1726/21/3/035021
16.
Friswell
,
M. I.
,
Ali
,
S. F.
,
Bilgen
,
O.
,
Adhikari
,
S.
,
Lees
,
A. W.
, and
Litak
,
G.
,
2012
, “
Non-Linear Piezoelectric Vibration Energy Harvesting From a Vertical Cantilever Beam With Tip Mass
,”
J. Intell. Mater. Syst. Struct.
,
23
(
13
), pp.
1505
1521
. 10.1177/1045389X12455722
17.
Ghiringhelli
,
G. L.
,
Masarati
,
P.
, and
Mantegazza
,
P.
,
2000
, “
Multibody Implementation of Finite Volume C0 Beams
,”
AIAA J.
,
38
(
1
), pp.
131
138
. 10.2514/2.933
18.
Morandini
,
M.
,
Chierichetti
,
M.
, and
Mantegazza
,
P.
,
2010
, “
Characteristic Behavior of Prismatic Anisotropic Beam Via Generalized Eigenvectors
,”
Int. J. Solids. Struct.
,
47
(
10
), pp.
1327
1337
. 10.1016/j.ijsolstr.2010.01.017
19.
Masarati
,
P.
,
Lanz
,
M.
, and
Mantegazza
,
P.
,
2001
, “
Multistep Integration of Ordinary, Stiff and Differential-Algebraic Problems for Multibody Dinamics Applications
,”
XVI Congresso Nazionale AIDAA
,
Palermo, Italy
,
Sept. 24–28
.
20.
Masarati
,
P.
,
Morandini
,
M.
, and
Mantegazza
,
P.
,
2014
, “
An Efficient Formulation for General-Purpose Multibody/Multiphysics Analysis
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
4
), p.
041001
. 10.1115/1.4025628
21.
Masarati
,
P.
,
2009
, “
Direct Eigen Analysis of Constrained System Dynamics
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-body Dyn.
,
223
(
4
), pp.
335
342
.
22.
Geuzaine
,
C.
, and
Remacle
,
J.-F.
,
2009
, “
Gmsh: A 3-D Finite Element Mesh Generator With Built-in Pre-and Post-Processing Facilities
,”
Int. J. Numer. Methods Eng.
,
79
(
11
), pp.
1309
1331
. 10.1002/nme.2579
23.
Syta
,
A.
,
Litak
,
G.
,
Friswell
,
M. I.
, and
Adhikari
,
S.
,
2016
, “
Multiple Solutions and Corresponding Power Output of a Nonlinear Bistable Piezoelectric Energy Harvester
,”
Eur. Phys. J. B
,
89
(
4
), p.
99
. 10.1140/epjb/e2016-60699-0
24.
Li
,
Y.
,
Zhou
,
S.
,
Yang
,
Z.
,
Guo
,
T.
, and
Mei
,
X.
,
2019
, “
High-Performance Low-Frequency Bistable Vibration Energy Harvesting Plate With Tip Mass Blocks
,”
Energy
,
180
, pp.
737
750
. 10.1016/j.energy.2019.05.002
You do not currently have access to this content.