Abstract

This paper aims to investigate the free coupled flexural–torsional vibrations of a double-cantilever structure. The structure consists of two identical Euler–Bernoulli cantilever beams with a piezoelectric layer on top. The beams are connected by a rigid tip connection at their free ends. The double-cantilever structure in this study vibrates in two distinct modes: flexural mode or coupled flexural–torsional mode. The flexural mode refers to the in-phase flexural vibrations of the two cantilever beams resulting in translation of the tip connection, while the coupled flexural–torsional mode refers to the coupled flexural–torsional vibrations of the cantilever beams resulting in rotation of the tip connection. The latter is the main interest of this research. The governing equations of motion and boundary conditions are developed using Hamilton’s principle. Two uncoupled equations are realized for each beam: one corresponding to the flexural vibrations and the other one corresponding to the torsional vibrations. The characteristic equations for both the flexural and the coupled flexural–torsional vibration modes are derived and solved to find the natural frequencies corresponding to each mode of vibration. The orthogonality condition among the mode shapes is derived and utilized to determine the modal coefficients corresponding to each mode of vibration. Moreover, the analytical and experimental investigations show that the coupled flexural–torsional fundamental frequency of the structure is dependent on dimensional parameters including the length of the cantilever beams and the length of the tip connection.

References

1.
Gritsenko
,
D.
,
Xu
,
J.
, and
Paoli
,
R.
,
2020
, “
Transverse Vibrations of Cantilever Beams: Analytical Solutions With General Steady-State Forcing
,”
Appl. Eng. Sci.
,
3
, p.
100017
.
2.
Banerjee
,
J. R.
,
1999
, “
Explicit Frequency Equation and Mode Shapes of a Cantilever Beam Coupled in Bending and Torsion
,”
J. Sound Vib.
,
224
(
2
), pp.
267
281
.
3.
Wang
,
B.
,
Wang
,
Z.
, and
Zuo
,
X.
,
2017
, “
Frequency Equation of Flexural Vibrating Cantilever Beam Considering the Rotary Inertial Moment of an Attached Mass
,”
Math. Probl. Eng.
,
2017
, p.
1568019
.
4.
Gürgöze
,
M.
,
1996
, “
On the Eigenfrequencies of a Cantilever Beam With Attached Tip Mass and a Spring-Mass System
,”
J. Sound Vib.
,
190
(
2
), pp.
149
162
.
5.
McCarty
,
R.
,
Carmichael
,
B.
, and
Mahmoodi
,
S. N.
,
2014
, “
Dynamic Analysis of Tapping Atomic Force Microscopy Considering Various Boundary Value Problems
,”
Sens. Actuators, A
,
216
, pp.
69
77
.
6.
Rossit
,
C. A.
, and
Laura
,
P. A. A.
,
2001
, “
Free Vibrations of a Cantilever Beam With a Spring–Mass System Attached to the Free End
,”
Ocean Eng.
,
28
(
7
), pp.
933
939
.
7.
Hong
,
J.
,
Dodson
,
J.
,
Laflamme
,
S.
, and
Downey
,
A.
,
2019
, “
Transverse Vibration of Clamped-Pinned-Free Beam With Mass at Free End
,”
Appl. Sci.
,
9
(
15
).
8.
Ece
,
M. C.
,
Aydogdu
,
M.
, and
Taskin
,
V.
,
2007
, “
Vibration of a Variable Cross-Section Beam
,”
Mech. Res. Commun.
,
34
(
1
), pp.
78
84
.
9.
Tan
,
G.
,
Wang
,
W.
, and
Jiao
,
Y.
,
2016
, “
Flexural Free Vibrations of Multistep Nonuniform Beams
,”
Math. Probl. Eng.
,
2016
, p.
7314280
.
10.
Łabędzki
,
P.
,
Pawlikowski
,
R.
, and
Radowicz
,
A.
,
2018
, “
Transverse Vibration of a Cantilever Beam Under Base Excitation Using Fractional Rheological Model
,”
AIP Conf. Proc.
,
2029
(
1
), p.
020034
.
11.
Pai
,
P. F.
, and
Nayfeh
,
A. H.
,
1990
, “
Non-Linear Non-Planar Oscillations of a Cantilever Beam Under Lateral Base Excitations
,”
Int. J. Non Linear Mech.
,
25
(
5
), pp.
455
474
.
12.
Wang
,
Q.
, and
Quek
,
S. T.
,
2000
, “
Flexural Vibration Analysis of Sandwich Beam Coupled With Piezoelectric Actuator
,”
Smart Mater. Struct.
,
9
(
1
), pp.
103
109
.
13.
Orhan
,
S.
,
2007
, “
Analysis of Free and Forced Vibration of a Cracked Cantilever Beam
,”
NDT and E Int.
,
40
(
6
), pp.
443
450
.
14.
Léonard
,
F.
,
Lanteigne
,
J.
,
Lalonde
,
S.
, and
Turcotte
,
Y.
,
2001
, “
Free-Vibration Behaviour of a Cracked Cantilever Beam and Crack Detection
,”
Mech. Syst. Signal Process
,
15
(
3
), pp.
529
548
.
15.
Kapuria
,
S.
,
Bhattacharyya
,
M.
, and
Kumar
,
A. N.
,
2008
, “
Bending and Free Vibration Response of Layered Functionally Graded Beams: A Theoretical Model and Its Experimental Validation
,”
Compos. Struct.
,
82
(
3
), pp.
390
402
.
16.
Huang
,
Y.
, and
Li
,
X.
,
2010
, “
A New Approach for Free Vibration of Axially Functionally Graded Beams With non-Uniform Cross-Section
,”
J. Sound Vib.
,
329
(
11
), pp.
2291
2303
.
17.
Green
,
C. P.
, and
Sader
,
J. E.
,
2002
, “
Torsional Frequency Response of Cantilever Beams Immersed in Viscous Fluids With Applications to the Atomic Force Microscope
,”
J. Appl. Phys.
,
92
(
10
), pp.
6262
6274
.
18.
Gao
,
S.
,
Zhang
,
G.
,
Jin
,
L.
,
Li
,
P.
, and
Liu
,
H.
,
2017
, “
Study on Characteristics of the Piezoelectric Energy-Harvesting From the Torsional Vibration of Thin-Walled Cantilever Beams
,”
Microsyst. Technol.
,
23
(
12
), pp.
5455
5465
.
19.
Rao
,
C. K.
, and
Mirza
,
S.
,
1988
, “
Free Torsional Vibrations of Tapered Cantilever I-Beams
,”
J. Sound Vib.
,
124
(
3
), pp.
489
496
.
20.
Eslimy-Isfahany
,
S. H. R.
, and
Banerjee
,
J. R.
,
2000
, “
Use of Generalized Mass in the Interpretation of Dynamic Response of Bending–Torsion Coupled Beams
,”
J. Sound Vib.
,
238
(
2
), pp.
295
308
.
21.
Hashemi
,
S. M.
, and
Richard
,
M. J.
,
2000
, “
Free Vibrational Analysis of Axially Loaded Bending-Torsion Coupled Beams: A Dynamic Finite Element
,”
Compos. Struct.
,
77
(
6
), pp.
711
724
.
22.
Adam
,
C.
,
1999
, “
Forced Vibrations of Elastic Bending–Torsion Coupled Beams
,”
J. Sound Vib.
,
221
(
2
), pp.
273
287
.
23.
Oguamanam
,
D. C. D.
,
2003
, “
Free Vibration of Beams With Finite Mass Rigid tip Load and Flexural–Torsional Coupling
,”
Int. J. Mech. Sci.
,
45
(
6–7
), pp.
963
979
.
24.
Barry
,
O.
,
Oguamanam
,
D. C. D.
, and
Zu
,
J. W.
,
2014
, “
On the Dynamic Analysis of a Beam Carrying Multiple Mass-Spring-Mass-Damper System
,”
Shock Vib.
,
2014
(
9
), p.
485630
.
25.
Bhadbhade
,
V.
,
Jalili
,
N.
, and
Nima Mahmoodi
,
S.
,
2008
, “
A Novel Piezoelectrically Actuated Flexural/Torsional Vibrating Beam Gyroscope
,”
J. Sound Vib.
,
311
(
3–5
), pp.
1305
1324
.
26.
Lee
,
B. K.
,
Lee
,
J. K.
,
Lee
,
T. E.
, and
Ahn
,
D. S.
,
2000
, “
Coupled Flexural-Torsional Vibrations of Thin-Walled Beams With Monosymmetric Cross-Section
,”
Comput. Civil Build. Eng.
,
1
, pp.
106
113
.
27.
Bercin
,
A. N.
, and
Tanaka
,
M.
,
1997
, “
Coupled Flexural–Torsional Vibrations of Timoshenko Beams
,”
J. Sound Vib.
,
207
(
1
), pp.
47
59
.
28.
Nima Mahmoodi
,
S.
, and
Jalili
,
N.
,
2007
, “
Non-Linear Vibrations and Frequency Response Analysis of Piezoelectrically Driven Microcantilevers
,”
Int. J. Non Linear Mech.
,
42
(
4
), pp.
577
587
.
29.
Rezaei
,
E.
, and
Turner
,
J. A.
,
2014
, “
Free Vibrations of U-Shaped Atomic Force Microscope Probes
,”
J. Appl. Phys.
,
115
(
17
), p.
174302
.
30.
Anderson
,
G. L.
,
1978
, “
Natural Frequencies of Two Cantilevers Joined by a Rigid Connector at Their Free Ends
,”
J. Sound Vib.
,
57
(
3
), pp.
403
412
.
31.
Lee
,
K. T.
,
2009
, “
Vibration of Two Cantilever Beams Clamped at One End and Connected by a Rigid Body at the Other
,”
J. Mech. Sci. Technol.
,
23
(
2
), pp.
358
371
.
32.
Augustyn
,
E.
, and
Kozień
,
M.
,
2016
, “
Possibility of Existence of Torsional Vibrations of Beams in Low Frequency Range
,”
Tech. Trans.
,
2016
(
3
), pp.
3
11
.
33.
Hammad
,
B. K.
,
2014
, “
Natural Frequencies and Mode Shapes of Mechanically Coupled Microbeam Resonators With an Application to Micromechanical Filters
,”
Shock Vib.
,
2014
(
15
), p.
939467
.
You do not currently have access to this content.