Abstract

This study presents new straightforward benchmark solutions for bending and free vibration of clamped anisotropic rectangular thin plates by a double finite integral transform method. Being different from the previous studies that took pure trigonometric functions as the integral kernels, the exponential functions are adopted, and the unknowns to be determined are constituted after the integral transform, which overcomes the difficulty in solving the governing higher-order partial differential equations with odd derivatives with respect to both the in-plane coordinate variables, thus goes beyond the limit of conventional finite integral transforms that are only applicable to isotropic or orthotropic plates. The present study provides an easy-to-implement approach for similar complex problems, extending the scope of finite integral transforms with applications to plate problems. The validity of the method and accuracy of the new solutions that can serve as benchmarks are well confirmed by satisfactory comparison with the numerical solutions.

References

1.
Daniel
,
I. M.
, and
Ishai
,
O.
,
1994
,
Engineering Mechanics of Composite Materials
,
New York
.
2.
Chakrabarti
,
A.
,
Topdar
,
P.
, and
Sheikh
,
A. H.
,
2006
, “
Vibration and Buckling of Laminated Sandwich Plates Having Interfacial Imperfections
,”
Eur. J. Mech. A/Solids
,
25
(
6
), pp.
981
995
.
3.
Eftekhari
,
S. A.
, and
Jafari
,
A. A.
,
2012
, “
High Accuracy Mixed Finite Element-Ritz Formulation for Free Vibration Analysis of Plates With General Boundary Conditions
,”
Appl. Math. Comput.
,
219
(
3
), pp.
1312
1344
.
4.
Gopalsamy
,
S.
,
Balasundaram
,
S.
, and
Bhattacharyya
,
P. K.
,
1989
, “
On a Mixed Finite Element Method for Clamped Anisotropic Plate Bending Problems
,”
Int. J. Num. Meth. Eng.
,
28
(
6
), pp.
1351
1370
.
5.
Nataraj
,
N.
,
Bhattacharyya
,
P. K.
,
Balasundaram
,
S.
, and
Gopalsamy
,
S.
,
1996
, “
On a Mixed-Hybrid Finite Element Method for Anisotropic Plate Bending Problems
,”
Int. J. Num. Meth. Eng.
,
39
(
23
), pp.
4063
4089
.
6.
Rikard
,
R.
, and
Chate
,
A.
,
1997
, “
Vibration and Damping Analysis of Laminated Composite and Sandwich Shells
,”
Mech. Compos. Mater. Struct.
,
4
(
3
), pp.
209
232
.
7.
Fazzolari
,
F. A.
, and
Carrera
,
E.
,
2014
, “
Coupled Thermoelastic Effect in Free Vibration Analysis of Anisotropic Multilayered Plates and FGM Plates by Using a Variable-Kinematics Ritz Formulation
,”
Eur. J. Mech. A/Solids
,
44
, pp.
157
174
.
8.
Quintana
,
M. V.
, and
Raffo
,
J. L.
,
2019
, “
A Variational Approach to Vibrations of Laminated Composite Plates With a Line Hinge
,”
Eur. J. Mech. A/Solids
,
73
, pp.
11
21
.
9.
Albuquerque
,
E. L.
,
Sollero
,
P.
,
Venturini
,
W. S.
, and
Aliabadi
,
M. H.
,
2006
, “
Boundary Element Analysis of Anisotropic Kirchhoff Plates
,”
Int. J. Solids Struct.
,
43
(
14–15
), pp.
4029
4046
.
10.
Paiva
,
W. P.
,
Sollero
,
P.
, and
Albuquerque
,
E. L.
,
2011
, “
Modal Analysis of Anisotropic Plates Using the Boundary Element Method
,”
Eng. Anal. Bound. Elem.
,
35
(
12
), pp.
1248
1255
.
11.
Liu
,
G. R.
, and
Wu
,
T. Y.
,
2001
, “
Multipoint Boundary Value Problems by Differential Quadrature Method
,”
Math. Comput. Model.
,
35
(
1–2
), pp.
215
227
.
12.
Wang
,
X.
,
Wang
,
Y.
, and
Xu
,
S.
,
2012
, “
DSC Analysis of a Simply Supported Anisotropic Rectangular Plate
,”
Compos. Struct.
,
94
(
8
), pp.
2576
2584
.
13.
Zhu
,
Q.
, and
Wang
,
X.
,
2011
, “
Free Vibration Analysis of Thin Isotropic and Anisotropic Rectangular Plates by the Discrete Singular Convolution Algorithm
,”
Int. J. Num. Meth. Eng.
,
86
(
6
), pp.
782
800
.
14.
Dong
,
C. Y.
,
Lo
,
S. H.
,
Cheung
,
Y. K.
, and
Lee
,
K. Y.
,
2004
, “
Anisotropic Thin Plate Bending Problems by Trefftz Boundary Collocation Method
,”
Eng. Anal. Bound. Elem.
,
28
(
9
), pp.
1017
1024
.
15.
Shafei
,
E.
,
Faroughi
,
S.
, and
Rabczuk
,
T.
,
2019
, “
Isogeometric HSDT Approach for Dynamic Stability Analysis of General Anisotropic Composite Plates
,”
Compos. Struct.
,
220
, pp.
926
939
.
16.
Albuquerque
,
E. L.
,
Sollero
,
P.
, and
de Paiva
,
W. P.
,
2007
, “
The Radial Integration Method Applied to Dynamic Problems of Anisotropic Plates
,”
Commun. Numer. Methods Eng.
,
23
(
9
), pp.
805
818
.
17.
Liu
,
G. R.
,
Zhao
,
X.
,
Dai
,
K. Y.
,
Zhong
,
Z. H.
,
Li
,
G. Y.
, and
Han
,
X.
,
2008
, “
Static and Free Vibration Analysis of Laminated Composite Plates Using the Conforming Radial Point Interpolation Method
,”
Compos. Sci. Technol.
,
68
(
2
), pp.
354
366
.
18.
Soares
,
R. A.
,
Palermo
,
L.
, and
Wrobel
,
L. C.
,
2020
, “
Application of the Radial Integration Method for the Buckling Analysis of Plates With Shear Deformation
,”
Eng. Anal. Bound. Elem.
,
118
(
9
), pp.
250
264
.
19.
Bhaskar
,
K.
, and
Sivaram
,
A.
,
2008
, “
Untruncated Infinite Series Superposition Method for Accurate Flexural Analysis of Isotropic/Orthotropic Rectangular Plates With Arbitrary Edge Conditions
,”
Compos. Struct.
,
83
(
1
), pp.
83
92
.
20.
Thai
,
H. T.
, and
Kim
,
S. E.
,
2012
, “
Analytical Solution of a Two Variable Refined Plate Theory for Bending Analysis of Orthotropic Levy-Type Plates
,”
Int. J. Mech. Sci.
,
54
(
1
), pp.
269
276
.
21.
Moslemi
,
A.
,
Navayi Neya
,
B.
, and
Vaseghi Amiri
,
J.
,
2017
, “
Benchmark Solution for Buckling of Thick Rectangular Transversely Isotropic Plates Under Biaxial Load
,”
Int. J. Mech. Sci.
,
131–132
, pp.
356
367
.
22.
Chaudhuri
,
R. A.
,
Balaraman
,
K.
, and
Kunukkasseril
,
V. X.
,
2005
, “
A Combined Theoretical and Experimental Investigation on Free Vibration of Thin Symmetrically Laminated Anisotropic Plates
,”
Compos. Struct.
,
67
(
1
), pp.
85
97
.
23.
Whitney
,
J. M.
,
1972
, “
Analysis of Anisotropic Rectangular Plates
,”
AIAA J.
,
10
(
10
), pp.
1344
1345
.
24.
Whitney
,
J. M.
,
1971
, “
Fourier Analysis of Clamped Anisotropic Plates
,”
ASME J. Appl. Mech.
,
38
(
2
), pp.
530
532
.
25.
Gorman
,
D. J.
, and
Sharma
,
R. K.
,
1976
, “
A Comprehensive Approach to the Free Vibration Analysis of Rectangular Plates by Use of the Method of Superposition
,”
J. Sound Vib.
,
47
(
1
), pp.
126
128
.
26.
Jabareen
,
M.
, and
Eisenberger
,
M.
,
2001
, “
Free Vibrations of Non-Homogeneous Circular and Annular Membranes
,”
J. Sound Vib.
,
240
(
3
), pp.
409
429
.
27.
Shufrin
,
I.
, and
Eisenberger
,
M.
,
2006
, “
Vibration of Shear Deformable Plates with Variable Thickness—First-Order and Higher-Order Analyses
,”
J. Sound Vib.
,
290
(
1–2
), pp.
465
489
.
28.
Efraim
,
E.
, and
Eisenberger
,
M.
,
2007
, “
Exact Vibration Analysis of Variable Thickness Thick Annular Isotropic and FGM Plates
,”
J. Sound Vib.
,
299
(
4–5
), pp.
720
738
.
29.
Eisenberger
,
M.
, and
Deutsch
,
A.
,
2015
, “
Static Analysis for Exact Vibration Analysis of Clamped Plates
,”
Int. J. Struct. Stab. Dyn.
,
15
(
8
), pp.
1
13
.
30.
Kolarevic
,
N.
,
Nefovska-Danilovic
,
M.
, and
Petronijevic
,
M.
,
2015
, “
Dynamic Stiffness Elements for Free Vibration Analysis of Rectangular Mindlin Plate Assemblies
,”
J. Sound Vib.
,
359
, pp.
84
106
.
31.
Kolarevic
,
N.
,
Marjanović
,
M.
,
Nefovska-Danilovic
,
M.
, and
Petronijevic
,
M.
,
2016
, “
Free Vibration Analysis of Plate Assemblies Using the Dynamic Stiffness Method Based on the Higher Order Shear Deformation Theory
,”
J. Sound Vib.
,
364
, pp.
110
132
.
32.
Nefovska-Danilovic
,
M.
, and
Petronijevic
,
M.
,
2015
, “
In-Plane Free Vibration and Response Analysis of Isotropic Rectangular Plates Using the Dynamic Stiffness Method
,”
Comput. Struct.
,
152
, pp.
82
95
.
33.
Fazzolari
,
F. A.
,
Boscolo
,
M.
, and
Banerjee
,
J. R.
,
2012
, “
Dynamic Stiffness Formulation and Free Vibration Analysis of Composite Plate Assemblies Using Higher Order Shear Deformation Theory
,”
Collection of Technical Papers—AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Honolulu, HI
,
Apr. 23–26
, pp.
1
25
.
34.
Banerjee
,
J. R.
,
Su
,
H.
, and
Jackson
,
D. R.
,
2006
, “
Free Vibration of Rotating Tapered Beams Using the Dynamic Stiffness Method
,”
J. Sound Vib.
,
298
(
4–5
), pp.
1034
1054
.
35.
Boscolo
,
M.
, and
Banerjee
,
J. R.
,
2011
, “
Dynamic Stiffness Elements and Their Applications for Plates Using First Order Shear Deformation Theory
,”
Comput. Struct.
,
89
(
3–4
), pp.
395
410
.
36.
Li
,
R.
,
Wang
,
H.
,
Zheng
,
X.
,
Xiong
,
S.
,
Hu
,
Z.
,
Yan
,
X.
,
Xiao
,
Z.
,
Xu
,
H.
, and
Li
,
P.
,
2019
, “
New Analytic Buckling Solutions of Rectangular Thin Plates With Two Free Adjacent Edges by the Symplectic Superposition Method
,”
Eur. J. Mech. A/Solids
,
76
, pp.
247
262
.
37.
Li
,
R.
,
Wang
,
P.
,
Wang
,
B.
,
Zhao
,
C.
, and
Su
,
Y.
,
2018
, “
New Analytic Free Vibration Solutions of Rectangular Thick Plates With a Free Corner by the Symplectic Superposition Method
,”
ASME J. Vib. Acoust.
,
140
(
3
), p.
031016
.
38.
Li
,
R.
,
Zhou
,
C.
, and
Zheng
,
X.
,
2021
, “
On New Analytic Free Vibration Solutions of Doubly Curved Shallow Shells by the Symplectic Superposition Method Within the Hamiltonian-System Framework
,”
ASME J. Vib. Acoust.
,
143
(
1
), p.
011002
.
39.
Cotta
,
R. M.
,
Lisboa
,
K. M.
,
Curi
,
M. F.
,
Balabani
,
S.
,
Quaresma
,
J. N. N.
,
Perez-Guerrero
,
J. S.
,
Macêdo
,
E. N.
, and
Amorim
,
N. S.
,
2019
, “
A Review of Hybrid Integral Transform Solutions in Fluid Flow Problems With Heat or Mass Transfer and Under Navier–Stokes Equations Formulation
,”
Numer. Heat Transfer, Part B
,
76
(
2
), pp.
60
87
.
40.
Helal
,
M. M.
,
2012
, “
Generalization of the Integral Transform Method to Nonlinear Heat-Conduction Problems in Multilayered Spherical Media
,”
J. King Saud Univ. Sci.
,
24
(
4
), pp.
367
377
.
41.
Sneddon
,
I. N.
,
1975
,
Application of Integral Transforms in the Theory of Elasticity
,
Springer-Verlag, Wien
,
Austria/New York
.
42.
An
,
C.
, and
Su
,
J.
,
2011
, “
Dynamic Response of Clamped Axially Moving Beams: Integral Transform Solution
,”
Appl. Math. Comput.
,
218
(
2
), pp.
249
259
.
43.
An
,
D.
,
Xu
,
D.
,
Ni
,
Z.
,
Su
,
Y.
,
Wang
,
B.
, and
Li
,
R.
,
2020
, “
Finite Integral Transform Method for Analytical Solutions of Static Problems of Cylindrical Shell Panels
,”
Eur. J. Mech. A/Solids
,
83
, p.
104033
.
44.
He
,
Y.
,
An
,
C.
, and
Su
,
J.
,
2020
, “
“Bending of Orthotropic Rectangular Thin Plates With Two Opposite Edges Clamped,” Proceedings of the Institution of Mechanical Engineers
,”
Proc. Inst. Mech. Eng., Part C
,
234
(
6
), pp.
1220
1230
.
45.
He
,
Y.
,
An
,
C.
, and
Su
,
J.
,
2020
, “
Generalized Integral Transform Solution for Free Vibration of Orthotropic Rectangular Plates With Free Edges
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
4
), pp.
1
10
.
46.
Li
,
R.
,
Zhong
,
Y.
,
Tian
,
B.
, and
Liu
,
Y.
,
2009
, “
On the Finite Integral Transform Method for Exact Bending Solutions of Fully Clamped Orthotropic Rectangular Thin Plates
,”
Appl. Math. Lett..
,
22
(
12
), pp.
1821
1827
.
47.
Tian
,
B.
,
Li
,
R.
, and
Zhong
,
Y.
,
2015
, “
Integral Transform Solutions to the Bending Problems of Moderately Thick Rectangular Plates With All Edges Free Resting on Elastic Foundations
,”
Appl. Math. Model.
,
39
(
1
), pp.
128
136
.
48.
Zhang
,
J.
,
Ullah
,
S.
, and
Zhong
,
Y.
,
2020
, “
New Analytical Free Vibration Solutions of Orthotropic Rectangular Thin Plates Using Generalized Integral Transformation
,”
J. Comput. Appl. Math.
,
367
, p.
112439
.
49.
Zhang
,
S.
, and
Xu
,
L.
,
2018
, “
Analytical Solutions for Flexure of Rectangular Orthotropic Plates With Opposite Rotationally Restrained and Free Edges
,”
Arch. Civ. Mech. Eng.
,
18
(
3
), pp.
965
972
.
50.
Zhang
,
S.
, and
Xu
,
L.
,
2017
, “
Bending of Rectangular Orthotropic Thin Plates with Rotationally Restrained Edges: A Finite Integral Transform Solution
,”
Appl. Math. Model.
,
46
, pp.
48
62
.
51.
Reddy
,
J. N.
,
2003
,
Mechanics of Laminated Composite Plates and Shells Theory and Analysis
,
CRC Press
,
New York
.
52.
Lekhnitskii
,
S. G.
,
1968
,
Anisotropic Plates
,
Gordon and Breach Science Publishers
,
New York
.
53.
ABAQUS
,
2013
,
Analysis User’s Guide V6.13
,
Dassault Systèmes
,
Pawtucket, RI
.
You do not currently have access to this content.