Abstract

The transient vibro-impacts induced by clearance between the connected rotors in driveline system easily causes serious transient noise and vibration, especially between the gear teeth with backlash. To analyze the transient vibro-impacts of the driveline system excited by a step-down engine torque, a new piecewise nonlinear clearance element with time-varying stiffness and oil squeeze damping is proposed, and an eight degrees-of-freedom (DOF) lumped parameters model with the new piecewise nonlinear clearance elements is established. The transient vibro-impact phenomena of the vehicle driveline during fast disengagement of the clutch are numerically simulated. Colormaps of angular acceleration and vibro-impact force shows the difference of frequency components from transient impact to stable tooth-meshing. The phase plane reveals the phenomenon of multiple impacts and rebounds in each transient impact and shows the relationship between the relative contact displacement and velocity. The frequency responses of the angular velocity, angular acceleration, and vibro-impact forces with time-varying stiffness and linear stiffness are compared, respectively. Compared with the widely used clearance element with piecewise linear stiffness, the new nonlinear clearance element with the piecewise nonlinear time-varying stiffness can better reveal the transient vibro-impact responses between the driving and driven gears. Lastly, the transient vibro-impact results of driveline system are verified by the vehicle experiments.

References

1.
Barthod
,
M.
,
Hayne
,
B.
,
Tébec
,
J. L.
, and
Pin
,
J. C.
,
2007
, “
Experimental Study of Gear Rattle Excited by a Multi-Harmonic Excitation
,”
Appl. Acoust.
,
68
(
9
), pp.
1003
1025
.
2.
Baumann
,
A.
, and
Bertsche
,
B.
,
2015
, “
Experimental Study on Transmission Rattle Noise Behaviour With Particular Regard to Lubricating Oil
,”
J. Sound Vib.
,
341
, pp.
195
205
.
3.
Bozca
,
M.
,
2018
, “
Transmission Error Model-Based Optimisation of the Geometric Design Parameters of an Automotive Transmission Gearbox to Reduce Gear-Rattle Noise
,”
Appl. Acoust.
,
130
, pp.
247
259
.
4.
Brancati
,
R.
,
Rocca
,
E.
, and
Russo
,
R.
,
2019
, “
Gear Rattle Reduction in an Automotive Driveline by the Adoption of a Flywheel With an Innovative Torsional Vibration Damper
,”
Proc. Inst. Mech. Eng. Part K: J. Multi-Body Dyn.
,
233
(
4
), pp.
777
791
.
5.
Yoon
,
J. Y.
, and
Kim
,
B.
,
2016
, “
Gear Rattle Analysis of a Torsional System With Multi-Staged Clutch Damper in a Manual Transmission Under the Wide Open Throttle Condition
,”
J. Mech. Sci. Technol.
,
30
(
3
), pp.
1003
1019
.
6.
Wei
,
Z.
,
Shangguan
,
W. B.
,
Liu
,
X.
, and
Hou
,
Q.
,
2020
, “
Modeling and Analysis of Friction Clutches With Three Stages Stiffness and Damping for Reducing Gear Rattles of Unloaded Gears at Transmission
,”
J. Sound Vib.
,
483
, p.
115469
.
7.
Rubio
,
E.
, and
Ramirez
,
G.
,
2015
, “
A Wavelet Approach to Detect Gear-Rattle Development in Mechanical Systems
,”
J. Vibroeng.
,
17
(
5
), pp.
2283
2290
.
8.
Krenz
,
R. A.
,
1985
, Vehicle Response to Throttle Tip-In/Tip-Out, SAE Technical Paper 850967.
9.
La
,
C.
,
Poggi
,
M.
,
Murphy
,
P.
, and
Zitko
,
O.
,
2011
, NVH Considerations for Zero Emissions Vehicle Driveline Design, SAE Technical Paper 2011-01-1545.
10.
Oh
,
W.
, and
Singh
,
R.
,
2005
, Examination of Clunk Phenomena Using a Non-Linear Torsional Model of a Front Wheel Drive Vehicle With Manual Transmission, SAE Technical Paper 2005-01-2291.
11.
Boere
,
S. W.
,
Shukla
,
A.
,
Fey
,
R. H. B.
, and
Nijmeijer
,
H.
,
2010
, “
Severity of Tip-Out Induced Impacts in Drive Line Systems With Backlash
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
2
), p.
024502
.
12.
Wehrwein
,
D.
, and
Mourelatos
,
Z. P.
,
2009
, “
Optimization of Engine Torque Management Under Uncertainty for Vehicle Driveline Clunk Using Time-Dependent Metamodels
,”
ASME J. Mech. Des.
,
131
(
5
), p.
051001
.
13.
Gilbert
,
D. A.
,
O'Leary
,
M. F.
, and
Rayce
,
J. S.
,
2001
, Integrating Test and Analytical Methods for the Quantification and Identification of Manual Transmission Driveline Clunk, SAE Technical Paper 2001-01-1502.
14.
Furlich
,
J.
,
Blough
,
J.
, and
Robinette
,
D.
,
2018
, “
Analysis of Experimental MT Clunk With STFT and CWT to Observe Mode Participation and Reduction
,”
Proceedings of International Conference on Noise and Vibration Engineering.
pp.
4269
4282
.
15.
Gurm
,
J. S.
,
Chen
,
W. J.
,
Keyvanmanesh
,
A.
,
Abe
,
T.
,
Crowther
,
A. R.
, and
Singh
,
R.
,
2007
, Transient Clunk Response of a Driveline System: Laboratory Experiment and Analytical Studies, SAE Technical Paper 2007-01-2233.
16.
Crowther
,
A. R.
, and
Zhang
,
N.
,
2005
, “
Torsional Finite Elements and Nonlinear Numerical Modelling in Vehicle Powertrain Dynamics
,”
J. Sound Vib.
,
284
(
3–5
), pp.
825
849
.
17.
Galvagno
,
E.
,
Dimauro
,
L.
,
Mari
,
G.
,
Velardocchia
,
M.
, and
Vella
,
A. D.
,
2019
, Dual Clutch Transmission Vibrations During Gear Shift: A Simulation-Based Approach for Clunking Noise Assessment, SAE Technical Paper 2019-01-1553.
18.
Reddy
,
P.
,
Darokar
,
K.
,
Robinette
,
D.
,
Shahbakhti
,
M.
,
Blough
,
J.
,
Ravichandran
,
M.
,
Farmer
,
M.
, and
Doering
,
J.
,
2019
, Control-Oriented Modeling of a Vehicle Drivetrain for Shuffle and Clunk Mitigation, SAE Technical Paper 2019-01-0345.
19.
Mourelatos
,
Z. P.
, and
Wehrwein
,
D.
,
2014
, “
Optimal Engine Torque Management for Reducing Driveline Clunk Using Time-Dependent Metamodels
,”
Int. J. Veh. Des.
,
66
(
3
), pp.
235
257
.
20.
Chae
,
C. K.
,
Lee
,
Y. W.
,
Won
,
K. M.
, and
Kang
,
K. T.
,
2004
, Experimental and Analytical Approach for Identification of Driveline Clunk Source & Transfer Path, SAE Technical Paper 2004-01-1231.
21.
Krak
,
M. D.
,
Dreyer
,
J.
, and
Singh
,
R.
,
2015
, Development of a Non-Linear Clutch Damper Experiment Exhibiting Transient Dynamics, SAE Technical Paper 2015-01-2189.
22.
Krak
,
M. D.
, and
Singh
,
R.
,
2015
, “
Practical and Controlled Laboratory Vibration Experiments That Demonstrate the Impulsive Response of Multi-Staged Clutch Dampers
,”
Inter-noise & Noise-con Congress and Conference Proceedings
,
San Francisco, CA
,
Aug. 9–12
.
23.
Oruganti
,
P. S.
,
Krak
,
M. D.
, and
Singh
,
R.
,
2018
, “
Step Responses of a Torsional System With Multiple Clearances: Study of Vibro-Impact Phenomenon Using Experimental and Computational Methods
,”
Mech. Syst. Signal Process.
,
99
, pp.
83
106
.
24.
Krak
,
M. D.
,
Dreyer
,
J. T.
, and
Singh
,
R.
,
2016
, “
Step-Response of a Torsional Device With Multiple Discontinuous Non-Linearities: Formulation of a Vibratory Experiment
,”
Mech. Syst. Signal Process.
,
70–71
, pp.
1117
1130
.
25.
Krak
,
M. D.
, and
Singh
,
R.
,
2016
, “
Correlation Between Quasi-Static and Dynamic Experiments for a Practical Torsional Device With Multiple Discontinuous Nonlinearities
,”
J. Sound Vib.
,
377
, pp.
243
263
.
26.
Krak
,
M. D.
, and
Singh
,
R.
,
2017
, “
Development of a Scientific Torsional System Experiment Containing Controlled Single or Dual-Clearance Non-Linearities: Examination of Step-Responses
,”
Mech. Syst. Signal Process.
,
84
, pp.
598
614
.
27.
Couderc
,
P.
,
Callenaere
,
J.
,
Hagopian
,
J. D.
,
Ferraris
,
G.
,
Kassai
,
A.
,
Borjesson
,
Y.
,
Verdillon
,
L.
, and
Gaimard
,
S.
,
1998
, “
Vehicle Driveline Dynamic Behaviour: Experimentation and Simulation
,”
J. Sound Vib.
,
218
(
1
), pp.
133
157
.
28.
Furlich
,
J.
,
Blough
,
J.
, and
Robinette
,
D.
,
2017
, Torsional Vibration Analysis of Six Speed MT Transmission and Driveline From Road to Lab, SAE Technical Paper 2017-01-1845.
29.
Gonzalez-Perez
,
I.
,
Iserte
,
J. L.
, and
Fuentes
,
A.
,
2011
, “
Implementation of Hertz Theory and Validation of a Finite Element Model for Stress Analysis of Gear Drives With Localized Bearing Contact
,”
Mech. Mach. Theory
,
46
(
6
), pp.
765
783
.
30.
Crowther
,
A. R.
,
Janello
,
C.
, and
Singh
,
R.
,
2007
, “
Quantification of Clearance-Induced Impulsive Sources in a Torsional System
,”
J. Sound Vib.
,
307
(
3–5
), pp.
428
451
.
31.
Machado
,
M.
,
Moreira
,
P.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Compliant Contact Force Models in Multibody Dynamics: Evolution of the Hertz Contact Theory
,”
Mech. Mach. Theory
,
53
, pp.
99
121
.
32.
Brancati
,
R.
,
Rocca
,
E.
, and
Russo
,
R.
,
2005
, “
A Gear Rattle Model Accounting for Oil Squeeze Between the Meshing Gear Teeth
,”
Proc. Inst. Mech. Eng. Part D: J. Automob. Eng.
,
219
(
9
), pp.
1075
1083
.
33.
Rocca
,
E.
, and
Russo
,
R.
,
2011
, “
Theoretical and Experimental Investigation Into the Influence of the Periodic Backlash Fluctuations on the Gear Rattle
,”
J. Sound Vib.
,
330
(
20
), pp.
4738
4752
.
34.
Wang
,
J. Y.
,
Liu
,
N.
,
Wang
,
H. T.
, and
Guo
,
L. X.
,
2020
, “
Nonlinear Dynamic Characteristics of Planetary Gear Transmission System Considering Squeeze Oil Film
,”
J. Low Freq. Noise Vib. Act. Control.
,
40
(
2
).
35.
Umezawa
,
K.
,
Suzuki
,
T.
, and
Sato
,
T.
,
1986
, “
Vibration of Power Transmission Helical Gears: Approximate Equation of Tooth Stiffness
,”
Bull. JSME
,
29
(
251
), pp.
1605
1611
.
36.
Cai
,
Y.
,
1995
, “
Simulation on the Rotational Vibration of Helical Gears in Consideration of the Tooth Separation Phenomenon (a New Stiffness Function of Helical Involute Tooth Pair)
,”
ASME J. Mech. Des.
,
117
(
3
), pp.
323
337
.
37.
Tian
,
Q.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2018
, “
A Comprehensive Survey of the Analytical, Numerical and Experimental Methodologies for Dynamics of Multibody Mechanical Systems With Clearance or Imperfect Joints
,”
Mech. Mach. Theory
,
122
, pp.
1
57
.
38.
Ma
,
J.
, and
Qian
,
L. F.
,
2017
, “
Modeling and Simulation of Planar Multibody Systems Considering Multiple Revolute Clearance Joints
,”
Nonlinear Dyn.
,
90
(
3
), pp.
1907
1940
.
39.
Xia
,
Y.
,
Pang
,
J.
,
Yang
,
L.
, and
Chu
,
Z.
,
2021
, “
Investigation on Clearance-Induced Vibro-Impacts of Torsional System Based on Hertz Contact Nonlinearity
,”
Mech. Mach. Theory
,
162
, p.
104342
.
40.
Hertz
,
H.
,
1882
, “
Ueber die Berührung Fester Elastischer Körper
,”
Journal für die reine und angewandte Mathematik
,
1882
(
92
), pp.
156
171
.
41.
Hunt
,
K. H.
, and
Crossley
,
F. R. E.
,
1975
, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
ASME J. Appl. Mech.
,
42
(
2
), pp.
440
445
.
42.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
,
1990
, “
A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems
,”
ASME J. Mech. Des.
,
112
(
3
), pp.
369
376
.
43.
Flores
,
P.
,
Machado
,
M.
,
Silva
,
M. T.
, and
Martins
,
J. M.
,
2011
, “
On the Continuous Contact Force Models for Soft Materials in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
25
(
3
), pp.
357
375
.
44.
Bai
,
Z. F.
, and
Zhao
,
J. J.
,
2020
, “
A Study on Dynamic Characteristics of Satellite Antenna System Considering 3D Revolute Clearance Joint
,”
Int. J. Aerosp. Eng.
,
2020
.
45.
Muvengei
,
O.
,
Kihiu
,
J.
, and
Ikua
,
B.
,
2013
, “
Dynamic Analysis of Planar Rigid-Body Mechanical Systems With Two-Clearance Revolute Joints
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
259
273
.
46.
Wu
,
J. S.
, and
Chen
,
C. H.
,
2001
, “
Torsional Vibration Analysis of Gear-Branched Systems by Finite Element Method
,”
J. Sound Vib.
,
240
(
1
), pp.
159
182
.
47.
Liu
,
Z. S.
,
Chen
,
S. H.
, and
Xu
,
T.
,
1993
, “
Derivatives of Eigenvalues for Torsional Vibration of Geared Shaft Systems
,”
ASME J. Vib. Acoust.
,
115
(
3
), pp.
277
279
.
48.
Chen
,
L.
,
Shi
,
W. K.
, and
Chen
,
Z. Y.
,
2020
, “
Research on Damping Performance of Dual Mass Flywheel Based on Vehicle Transmission System Modeling and Multi-Condition Simulation
,”
IEEE Access
,
8
, pp.
28064
28077
.
49.
Liu
,
S. N.
, and
Liu
,
F. H.
,
2019
, “
Vibration Characteristics of Spur Gear System With Non-Linear Damping Under no Lubrication Condition
,”
J. Vibroeng.
,
21
(
5
), pp.
1260
1270
.
50.
Li
,
M.
,
Khonsari
,
M.
, and
Yang
,
R. Z.
,
2018
, “
Dynamics Analysis of Torsional Vibration Induced by Clutch and Gear Set in Automatic Transmission
,”
Int. J. Automot. Technol.
,
19
(
3
), pp.
473
488
.
51.
Guilbault
,
R.
,
Lalonde
,
S.
, and
Thomas
,
M.
,
2012
, “
Nonlinear Damping Calculation in Cylindrical Gear Dynamic Modeling
,”
J. Sound Vib.
,
331
(
9
), pp.
2110
2128
.
52.
Shangguan
,
W. B.
,
Liu
,
X. L.
,
Yin
,
Y.
, and
Rakheja
,
S.
,
2018
, “
Modeling of Automotive Driveline System for Reducing Gear Rattles
,”
J. Sound Vib.
,
416
, pp.
136
153
.
53.
Russo
,
R.
,
Brancati
,
R.
, and
Rocca
,
E.
,
2009
, “
Experimental Investigations About the Influence of Oil Lubricant Between Teeth on the Gear Rattle Phenomenon
,”
J. Sound Vib.
,
321
(
3
), pp.
647
661
.
54.
Brancati
,
R.
,
Rocca
,
E.
, and
Russo
,
R.
,
2007
, “
An Analysis of the Automotive Driveline Dynamic Behaviour Focusing on the Influence of the Oil Squeeze Effect on the Idle Rattle Phenomenon
,”
J. Sound Vib.
,
303
(
3
), pp.
858
872
.
55.
Chen
,
W. T.
,
Chen
,
S. Y.
,
Hu
,
Z. H.
,
Tang
,
J. Y.
, and
Li
,
H. N.
,
2020
, “
Dynamic Analysis of a Bevel Gear System Equipped With Finite Length Squeeze Film Dampers for Passive Vibration Control
,”
Mech. Mach. Theory
,
147
, p.
103779
.
56.
Xiao
,
Z. L.
,
Zhou
,
C. J.
,
Chen
,
S. Y.
, and
Li
,
Z. D.
,
2019
, “
Effects of Oil Film Stiffness and Damping on Spur Gear Dynamics
,”
Nonlinear Dyn.
,
96
(
1
), pp.
145
159
.
57.
Shampine
,
L. F.
, and
Reichelt
,
M. W.
,
1997
, “
The MATLAB ODE Suite
,”
SIAM J. Sci. Comput.
58.
Liu
,
X. L.
,
Shangguan
,
W. B.
,
Jing
,
X.
, and
Ahmed
,
W.
,
2016
, “
Vibration Isolation Analysis of Clutches Based on Trouble Shooting of Vehicle Accelerating Noise
,”
J. Sound Vib.
,
382
, pp.
84
99
.
59.
Resor
,
B. R.
,
Trethewey
,
M. W.
, and
Maynard
,
K. P.
,
2005
, “
Compensation for Encoder Geometry and Shaft Speed Variation in Time Interval Torsional Vibration Measurement
,”
J. Sound Vib.
,
286
(
4–5
), pp.
897
920
.
60.
Li
,
Y.
,
Gu
,
F.
,
Harris
,
G.
,
Ball
,
A.
,
Bennett
,
N.
, and
Travis
,
K.
,
2005
, “
The Measurement of Instantaneous Angular Speed
,”
Mech. Syst. Signal Process.
,
19
(
4
), pp.
786
805
.
61.
Ravindran
,
R.
,
Das
,
D.
,
Kamani
,
K.
,
Sivaraman
,
P.
, and
Arora
,
G.
,
2015
, Methodology Development for Torsional Vibration Measurement and Processing in Powertrains, SAE Technical Paper 2015-01-2278.
You do not currently have access to this content.