Abstract

Time- and frequency-domain numerical models are developed to investigate the acoustic performance of metascreen-based coatings for maritime applications. The coating designs are composed of periodic air-filled cavities embedded in a soft elastic medium, which is attached to a hard backing and submerged in water. Numerical results for an acoustic coating with cylindrical cavities are favorably compared with analytical and experimental results from the literature. Frequencies associated with peak sound absorption as a function of the geometric parameters of the cavities and material properties of the host medium are predicted. Variation in the cavity dimensions that modifies the cylindrical-shaped cavities to flat disks or thin needles is modeled. Results reveal that high sound absorption occurs when either the diameter or length of the cavities is reduced. Physical mechanisms governing sound absorption for the various cavity designs are described.

References

1.
Méresse
,
P.
,
Audoly
,
C.
,
Croënne
,
C.
, and
Hladky-Hennion
,
A.-C.
,
2015
, “
Acoustic Coatings for Maritime Systems Applications Using Resonant Phenomena
,”
Comptes Rendus Mecanique
,
343
(
12
), pp.
645
655
.
2.
Ye
,
C.
,
Liu
,
X.
,
Xin
,
F.
, and
Lu
,
T. J.
,
2019
, “
Underwater Acoustic Absorption of Composite Anechoic Layers With Inner Holes
,”
ASME J. Vib. Acoust.
,
141
(
4
), p.
041006
.
3.
Zhang
,
Y.
, and
Cheng
,
L.
,
2021
, “
Ultra-Thin and Broadband Low-Frequency Underwater Acoustic Meta-Absorber
,”
Int. J. Mech. Sci.
,
210
, p.
106732
.
4.
Guillermic
,
R.-M.
,
Lanoy
,
M.
,
Strybulevych
,
A.
, and
Page
,
J. H.
,
2019
, “
A PDMS-Based Broadband Acoustic Impedance Matched Material for Underwater Applications
,”
Ultrasonics
,
94
, pp.
152
157
.
5.
Lane
,
R.
,
1981
, “
Absorption Mechanisms for Waterborne Sound in Alberich Anechoic Layers
,”
Ultrasonics
,
19
(
1
), pp.
28
30
.
6.
Tao
,
M.
,
Tang
,
W. L.
, and
Hua
,
H. X.
,
2010
, “
Noise Reduction Analysis of An Underwater Decoupling Layer
,”
ASME J. Vib. Acoust.
,
132
(
6
), p.
061006
.
7.
Hinders
,
M.
,
Rhodes
,
B.
, and
Fang
,
T.
,
1995
, “
Particle-Loaded Composites for Acoustic Anechoic Coatings
,”
J. Sound. Vib.
,
185
(
2
), pp.
219
246
.
8.
Zhao
,
H.
,
Liu
,
Y.
,
Yu
,
D.
,
Wang
,
G.
,
Wen
,
J.
, and
Wen
,
X.
,
2007
, “
Absorptive Properties of Three-Dimensional Phononic Crystal
,”
J. Sound. Vib.
,
303
(
1–2
), pp.
185
194
.
9.
Sharma
,
G. S.
,
Skvortsov
,
A.
,
MacGillivray
,
I.
, and
Kessissoglou
,
N.
,
2017
, “
Acoustic Performance of Gratings of Cylindrical Voids in a Soft Elastic Medium With a Steel Backing
,”
J. Acoust. Soc. Am.
,
141
(
6
), pp.
4694
4704
.
10.
Ivansson
,
S. M.
,
2012
, “
Anechoic Coatings Obtained From Two-and Three-Dimensional Monopole Resonance Diffraction Gratings
,”
J. Acoust. Soc. Am.
,
131
(
4
), pp.
2622
2637
.
11.
Meng
,
H.
,
Wen
,
J.
,
Zhao
,
H.
,
Lv
,
L.
, and
Wen
,
X.
,
2012
, “
Analysis of Absorption Performances of Anechoic Layers With Steel Plate Backing
,”
J. Acoust. Soc. Am.
,
132
(
1
), pp.
69
75
.
12.
Meng
,
H.
,
Wen
,
J.
,
Zhao
,
H.
, and
Wen
,
X.
,
2012
, “
Optimization of Locally Resonant Acoustic Metamaterials on Underwater Sound Absorption Characteristics
,”
J. Sound. Vib.
,
331
(
20
), pp.
4406
4416
.
13.
Sharma
,
G. S.
,
Skvortsov
,
A.
,
MacGillivray
,
I.
, and
Kessissoglou
,
N.
,
2019
, “
Acoustic Performance of Periodic Steel Cylinders Embedded in a Viscoelastic Medium
,”
J. Sound. Vib.
,
443
, pp.
652
665
.
14.
Sharma
,
G. S.
,
Faverjon
,
B.
,
Dureisseix
,
D.
,
Skvortsov
,
A.
,
MacGillivray
,
I.
,
Audoly
,
C.
, and
Kessissoglou
,
N.
,
2020
, “
Acoustic Performance of a Periodically Voided Viscoelastic Medium with Uncertainty in Design Parameters
,”
ASME J. Vib. Acoust.
,
142
(
6
), p.
061002
.
15.
Hladky-Hennion
,
A.-C.
, and
Decarpigny
,
J.-N.
,
1991
, “
Analysis of the Scattering of a Plane Acoustic Wave by a Doubly Periodic Structure Using the Finite Element Method: Application to Alberich Anechoic Coatings
,”
J. Acoust. Soc. Am.
,
90
(
6
), pp.
3356
3367
.
16.
Panigrahi
,
S.
,
Jog
,
C.
, and
Munjal
,
M.
,
2008
, “
Multi-Focus Design of Underwater Noise Control Linings Based on Finite Element Analysis
,”
Appl. Acoust.
,
69
(
12
), pp.
1141
1153
.
17.
Calvo
,
D. C.
,
Thangawng
,
A. L.
, and
Layman
,
C. N.
,
2012
, “
Low-Frequency Resonance of An Oblate Spheroidal Cavity in a Soft Elastic Medium
,”
J. Acoust. Soc. Am.
,
132
(
1
), pp.
EL1
EL7
.
18.
Calvo
,
D. C.
,
Thangawng
,
A. L.
,
Layman Jr
,
C. N.
,
Casalini
,
R.
, and
Othman
,
S. F.
,
2015
, “
UnderWater Sound Transmission Through Arrays of Disk Cavities in a Soft Elastic Medium
,”
J. Acoust. Soc. Am.
,
138
(
4
), pp.
2537
2547
.
19.
Zhong
,
J.
,
Zhao
,
H.
,
Yang
,
H.
,
Yin
,
J.
, and
Wen
,
J.
,
2019
, “
On the Accuracy and Optimization Application of An Axisymmetric Simplified Model for Underwater Sound Absorption of Anechoic Coatings
,”
Appl. Acoust.
,
145
, pp.
104
111
.
20.
Li
,
J.
, and
Li
,
S.
,
2018
, “
Topology Optimization of Anechoic Coating for Maximizing Sound Absorption
,”
J. Vib. Control
,
24
(
11
), pp.
2369
2385
.
21.
Sharma
,
G. S.
,
Skvortsov
,
A.
,
MacGillivray
,
I.
, and
Kessissoglou
,
N.
,
2017
, “
Sound Transmission Through a Periodically Voided Soft Elastic Medium Submerged in Water
,”
Wave Motion
,
70
, pp.
101
112
.
22.
Skvortsov
,
A.
,
MacGillivray
,
I.
,
Sharma
,
G. S.
, and
Kessissoglou
,
N.
,
2019
, “
Sound Scattering by a Lattice of Resonant Inclusions in a Soft Medium
,”
Phys. Rev. E
,
99
(
6
), p.
063006
.
23.
Gao
,
N.
, and
Lu
,
K.
,
2020
, “
An Underwater Metamaterial for Broadband Acoustic Absorption At Low Frequency
,”
Appl. Acoust.
,
169
, p.
107500
.
24.
Ye
,
C.
,
Liu
,
X.
,
Xin
,
F.
, and
Lu
,
T. J.
,
2018
, “
Influence of Hole Shape on Sound Absorption of Underwater Anechoic Layers
,”
J. Sound. Vib.
,
426
, pp.
54
74
.
25.
Sharma
,
G. S.
,
Skvortsov
,
A.
,
MacGillivray
,
I.
, and
Kessissoglou
,
N.
,
2020
, “
Sound Scattering by a Bubble Metasurface
,”
Phys. Rev. B
,
102
(
21
), p.
214308
.
26.
Ivansson
,
S. M.
,
2008
, “
Numerical Design of Alberich Anechoic Coatings With Superellipsoidal Cavities of Mixed Sizes
,”
J. Acoust. Soc. Am.
,
124
(
4
), pp.
1974
1984
.
27.
Wang
,
S.
,
Hu
,
B.
, and
Du
,
Y.
,
2020
, “
Sound Absorption of Periodically Cavities With Gradient Changes of Radii and Distances Between Cavities in a Soft Elastic Medium
,”
Appl. Acoust.
,
170
, p.
107501
.
28.
Sharma
,
G. S.
,
Skvortsov
,
A.
,
MacGillivray
,
I.
, and
Kessissoglou
,
N.
,
2019
, “
Sound Absorption by Rubber Coatings With Periodic Voids and Hard Inclusions
,”
Appl. Acoust.
,
143
, pp.
200
210
.
29.
Yang
,
H.
,
Zhao
,
H.
,
Yin
,
J.
, and
Wen
,
J.
,
2019
, “
Hybrid Meta-Structure for Broadband Waterborne Sound Absorption
,”
AIP Adv.
,
9
(
12
), p.
125226
.
30.
Leroy
,
V.
,
Bretagne
,
A.
,
Fink
,
M.
,
Willaime
,
H.
,
Tabeling
,
P.
, and
Tourin
,
A.
,
2009
, “
Design and Characterization of Bubble Phononic Crystals
,”
Appl. Phys. Lett.
,
95
(
17
), p.
171904
.
31.
Leroy
,
V.
,
Strybulevych
,
A.
,
Scanlon
,
M.
, and
Page
,
J.
,
2009
, “
Transmission of Ultrasound Through a Single Layer of Bubbles
,”
Eur. Phys. J. E
,
29
(
1
), pp.
123
130
.
32.
Leroy
,
V.
,
Bretagne
,
A.
,
Lanoy
,
M.
, and
Tourin
,
A.
,
2016
, “
Band Gaps in Bubble Phononic Crystals
,”
AIP Adv.
,
6
(
12
), p.
121604
.
33.
Bretagne
,
A.
,
Tourin
,
A.
, and
Leroy
,
V.
,
2011
, “
Enhanced and Reduced Transmission of Acoustic Waves With Bubble Meta-screens
,”
Appl. Phys. Lett.
,
99
(
22
), p.
221906
.
34.
Leroy
,
V.
,
Strybulevych
,
A.
,
Lanoy
,
M.
,
Lemoult
,
F.
,
Tourin
,
A.
, and
Page
,
J. H.
,
2015
, “
Superabsorption of Acoustic Waves With Bubble Metascreens
,”
Phys. Rev. B
,
91
(
2
), p.
020301
.
35.
Sharma
,
G. S.
,
Skvortsov
,
A.
,
MacGillivray
,
I.
, and
Kessissoglou
,
N.
,
2020
, “
On Superscattering of Sound Waves by a Lattice of Disk-Shaped Cavities in a Soft Material
,”
Appl. Phys. Lett.
,
116
(
4
), p.
041602
.
36.
Zhao
,
H.
,
Wen
,
J.
,
Yang
,
H.
,
Lv
,
L.
, and
Wen
,
X.
,
2014
, “
Backing Effects on the Underwater Acoustic Absorption of a Viscoelastic Slab With Locally Resonant Scatterers
,”
Appl. Acoust.
,
76
, pp.
48
51
.
37.
Toyoda
,
M.
, and
Takahashi
,
D.
,
2009
, “
Prediction for Architectural Structure-Borne Sound by the Finite-Difference Time-Domain Method
,”
Acoust. Sci. Technol.
,
30
(
4
), pp.
265
276
.
38.
Toyoda
,
M.
,
Miyazaki
,
H.
,
Shiba
,
Y.
,
Tanaka
,
A.
, and
Takahashi
,
D.
,
2012
, “
Finite-Difference Time-Domain Method for Heterogeneous Orthotropic Media With Damping
,”
Acoust. Sci. Technol.
,
33
(
2
), pp.
77
85
.
39.
Liebermann
,
L.
,
1949
, “
The Second Viscosity of Liquids
,”
Phys. Rev.
,
75
(
9
), pp.
1415
.
40.
Sohn
,
C. H.
, and
Park
,
J. H.
,
2011
, “
A Comparative Study on Acoustic Damping Induced by Half-Wave, Quarter-Wave, and Helmholtz Resonators
,”
Aerospace Sci. Technol.
,
15
(
8
), pp.
606
614
.
You do not currently have access to this content.