Abstract

Acoustic metasurfaces use the phase gradient of a single layer to reflect/refract waves in any direction. This study shows that other than wave steering, acoustic metasurfaces can exhibit wave splitting or trapping through the geometry design. Previous studies focused on the generalized Snell’s law when developing metasurfaces and attempted to prevent wave leakages. On the contrary, this study exploits the periodicity of metasurfaces to accomplish acoustic wave splitting, which leads to a similar concept to metagrating. For acoustic wave trapping, we show that through proper arrangements, an acoustic wave can be localized in a specific region without using any boundaries based on the generalized Snell’s law. A design formula is provided to trap waves from any incident angle or at any frequency. The analytical and numerical results are in good agreement, verifying the effectiveness of the proposed concept for wave splitting and trapping. This study shows the versatile applications of acoustic metasurfaces and is useful for interferometry and energy harvesting.

References

1.
Li
,
B.
,
Guan
,
J. J.
,
Deng
,
K.
, and
Zhao
,
H.
,
2012
, “
Splitting of Self-Collimated Beams in Two-Dimensional Sonic Crystals
,”
J. Appl. Phys.
,
112
(
12
), p.
124514
.
2.
Li
,
J.
,
Wu
,
F.
,
Zhong
,
H.
,
Yao
,
Y.
, and
Zhang
,
X.
,
2015
, “
Acoustic Beam Splitting in Two-Dimensional Phononic Crystals Using Self-Collimation Effect
,”
J. Appl. Phys.
,
118
(
14
), p.
144903
.
3.
Yan
,
X.
,
Wei
,
W.
,
Hu
,
N.
, and
Liu
,
F.
,
2015
, “
Splitting of Acoustic Energy by Zero Index Metamaterials
,”
Phys. Lett. A
,
379
(
37
), pp.
2147
2149
.
4.
Cao
,
S.
, and
Hou
,
Z.
,
2019
, “
Angular-Asymmetric Transmitting Metasurface and Splitter for Acoustic Waves: Combining the Coherent Perfect Absorber and a Laser
,”
Phys. Rev. Appl.
,
12
(
6
), p.
064016
.
5.
Fang
,
X.
,
Wang
,
X.
, and
Li
,
Y.
,
2019
, “
Acoustic Splitting and Bending With Compact Coding Metasurfaces
,”
Phys. Rev. Appl.
,
11
(
6
), p.
064033
.
6.
Liu
,
T.
,
Ma
,
G.
,
Liang
,
S.
,
Gao
,
H.
,
Gu
,
Z.
,
An
,
S.
, and
Zhu
,
J.
,
2020
, “
Single-Sided Acoustic Beam Splitting Based on Parity-Time Symmetry
,”
Phys. Rev. B
,
102
(
1
), p.
014306
.
7.
Packo
,
P.
,
Norris
,
A. N.
, and
Torrent
,
D.
,
2021
, “
Metaclusters for the Full Control of Mechanical Waves
,”
Phys. Rev. Appl.
,
15
(
1
), p.
014051
.
8.
Ni
,
H.
,
Fang
,
X.
,
Hou
,
Z.
,
Li
,
Y.
, and
Assouar
,
B.
,
2019
, “
High-Efficiency Anomalous Splitter by Acoustic Meta-grating
,”
Phys. Rev. B
,
100
(
10
), p.
104104
.
9.
Carrara
,
M.
,
Cacan
,
M. R.
,
Toussaint
,
J.
,
Leamy
,
M. J.
,
Ruzzene
,
M.
, and
Erturk
,
A.
,
2013
, “
Metamaterial-Inspired Structures and Concepts for Elastoacoustic Wave Energy Harvesting
,”
Smart Mater. Struct.
,
22
(
6
), p.
065004
.
10.
Wu
,
L. Y.
,
Chen
,
L. W.
, and
Liu
,
C. M.
,
2009
, “
Acoustic Energy Harvesting Using Resonant Cavity of a Sonic Crystal
,”
Appl. Phys. Lett.
,
95
(
1
), p.
013506
.
11.
Qi
,
S.
,
Oudich
,
M.
,
Li
,
Y.
, and
Assouar
,
B.
,
2016
, “
Acoustic Energy Harvesting Based on a Planar Acoustic Metamaterial
,”
Appl. Phys. Lett.
,
108
(
26
), p.
263501
.
12.
Pillai
,
M. A.
, and
Deenadayalan
,
E.
,
2014
, “
A Review of Acoustic Energy Harvesting
,”
Int. J. Precis. Eng. Manuf.
,
15
(
5
), pp.
949
965
.
13.
Choi
,
J.
,
Jung
,
I.
, and
Kang
,
C. Y.
,
2019
, “
A Brief Review of Sound Energy Harvesting
,”
Nano Energy
,
56
, pp.
169
183
.
14.
Yuan
,
M.
,
Cao
,
Z.
,
Luo
,
J.
, and
Chou
,
X.
,
2019
, “
Recent Developments of Acoustic Energy Harvesting: A Review
,”
Micromachines
,
10
(
1
), p.
48
.
15.
Liu
,
F.
,
Phipps
,
A.
,
Horowitz
,
S.
,
Ngo
,
K.
,
Cattafesta
,
L.
,
Nishida
,
T.
, and
Sheplak
,
M.
,
2008
, “
Acoustic Energy Harvesting Using an Electromechanical Helmholtz Resonator
,”
J. Acoust. Soc. Am.
,
123
(
4
), pp.
1983
1990
.
16.
Notomi
,
M.
,
2000
, “
Theory of Light Propagation in Strongly Modulated Photonic Crystals: Refractionlike Behavior in the Vicinity of the Photonic Band Gap
,”
Phys. Rev. B
,
62
(
16
), pp.
10696
10705
.
17.
He
,
S.
,
Jin
,
Y.
,
Ruan
,
Z.
, and
Kuang
,
J.
,
2005
, “
On Subwavelength and Open Resonators Involving Metamaterials of Negative Refraction Index
,”
New J. Phys.
,
7
(
1
), p.
210
.
18.
Ruan
,
Z.
, and
He
,
S.
,
2005
, “
Open Cavity Formed by a Photonic Crystal With Negative Effective Index of Refraction
,”
Opt. Lett.
,
30
(
17
), pp.
2308
2310
.
19.
Yu
,
N.
,
Genevet
,
P.
,
Kats
,
M. A.
,
Aieta
,
F.
,
Tetienne
,
J. P.
,
Capasso
,
F.
, and
Gaburro
,
Z.
,
2011
, “
Light Propagation With Phase Discontinuities: Generalized Laws of Reflection and Refraction
,”
Science
,
334
(
6054
), pp.
333
337
.
20.
Torrent
,
D.
,
2018
, “
Acoustic Anomalous Reflectors Based on Diffraction Grating Engineering
,”
Phys. Rev. B
,
98
(
6
), p.
060101
.
21.
Wang
,
Y.
,
Cheng
,
Y.
, and
Liu
,
X.
,
2019
, “
Modulation of Acoustic Waves by a Broadband Metagrating
,”
Sci. Rep.
,
9
(
1
), pp.
1
8
.
22.
Xu
,
S.
,
Qiu
,
C.
, and
Liu
,
Z.
,
2012
, “
Acoustic Transmission Through Asymmetric Grating Structures Made of Cylinders
,”
J. Appl. Phys.
,
111
(
9
), p.
094505
.
23.
Hou
,
Z.
,
Fang
,
X.
,
Li
,
Y.
, and
Assouar
,
B.
,
2019
, “
Highly Efficient Acoustic Metagrating With Strongly Coupled Surface Grooves
,”
Phys. Rev. Appl.
,
12
(
3
), p.
034021
.
24.
Chiang
,
Y. K.
,
Oberst
,
S.
,
Melnikov
,
A.
,
Quan
,
L.
,
Marburg
,
S.
,
Alù
,
A.
, and
Powell
,
D. A.
,
2020
, “
Reconfigurable Acoustic Metagrating for High-Efficiency Anomalous Reflection
,”
Phys. Rev. Appl.
,
13
(
6
), p.
064067
.
25.
Xie
,
Y.
,
Wang
,
W.
,
Chen
,
H.
,
Konneker
,
A.
,
Popa
,
B. I.
, and
Cummer
,
S. A.
,
2014
, “
Wavefront Modulation and Subwavelength Diffractive Acoustics With an Acoustic Metasurface
,”
Nat. Commun.
,
5
(
1
), pp.
1
5
.
26.
Mei
,
J.
, and
Wu
,
Y.
,
2014
, “
Controllable Transmission and Total Reflection Through an Impedance-Matched Acoustic Metasurface
,”
New J. Phys.
,
16
(
12
), p.
123007
.
27.
Tang
,
K.
,
Qiu
,
C.
,
Ke
,
M.
,
Lu
,
J.
,
Ye
,
Y.
, and
Liu
,
Z.
,
2014
, “
Anomalous Refraction of Airborne Sound Through Ultrathin Metasurfaces
,”
Sci. Rep.
,
4
(
1
), pp.
1
7
.
28.
Zhu
,
Y.
, and
Assouar
,
B.
,
2019
, “
Multifunctional Acoustic Metasurface Based on an Array of Helmholtz Resonators
,”
Phys. Rev. B
,
99
(
17
), p.
174109
.
29.
Fan
,
S. W.
,
Zhao
,
S. D.
,
Chen
,
A. L.
,
Wang
,
Y. F.
,
Assouar
,
B.
, and
Wang
,
Y. S.
,
2019
, “
Tunable Broadband Reflective Acoustic Metasurface
,”
Phys. Rev. Appl.
,
11
(
4
), p.
044038
.
30.
Zhao
,
S. D.
,
Chen
,
A. L.
,
Wang
,
Y. S.
, and
Zhang
,
C.
,
2018
, “
Continuously Tunable Acoustic Metasurface for Transmitted Wavefront Modulation
,”
Phys. Rev. Appl.
,
10
(
5
), p.
054066
.
31.
Jiang
,
X.
,
Li
,
Y.
,
Ta
,
D.
, and
Wang
,
W.
,
2020
, “
Ultrasonic Sharp Autofocusing With Acoustic Metasurface
,”
Phys. Rev. B
,
102
(
6
), p.
064308
.
32.
Ma
,
F.
,
Xu
,
Y.
, and
Wu
,
J. H.
,
2019
, “
Shell-Type Acoustic Metasurface and Arc-Shape Carpet Cloak
,”
Sci. Rep.
,
9
(
1
), pp.
1
11
.
33.
Larouche
,
S.
, and
Smith
,
D. R.
,
2012
, “
Reconciliation of Generalized Refraction With Diffraction Theory
,”
Opt. Lett.
,
37
(
12
), pp.
2391
2393
.
34.
Cao
,
L.
,
Yang
,
Z.
, and
Xu
,
Y.
,
2018
, “
Steering Elastic SH Waves in an Anomalous Way by Metasurface
,”
J. Sound Vib.
,
418
, pp.
1
14
.
35.
Squires
,
G. L.
,
2001
,
Practical Physics
,
Cambridge University Press
,
Cambridge, UK
, Chap. 3.
You do not currently have access to this content.