Abstract

Recent results in the literature highlight the impact of nonlinear inertial forces on the post-flutter limit cycle oscillation (LCO) characteristics of highly deflected structures in supersonic axial flow. The current investigation examines how the ability to passively modulate nonlinear inertial forces may alter the overall aeroelastic response. The structural model is a one-dimensional nonlinear inextensible plate subject to nonlinear aerodynamic forces in accordance with a new, geometrically modified third-order Piston Theory. For the linear aeroelastic case, we find that nonhomogeneous mass distribution elicits discontinuous increases in the critical Mach number for flutter and several flutter mode-switching phenomena that are not observed when mass is added homogeneously. The existence of several different flutter mode mechanisms as a function of a concentrated mass location leads to different post-flutter LCO amplitude behavior. This is found to transition the underlying nonlinear structural dynamics to either be stiffening (when lower-order modes merge) or softening (when higher-order modes merge), which in turn alter the influence of nonlinear aerodynamic forces. We also address discrepancies in LCO amplitude trends due to the nonlinear inertial forces previously reported in the literature.

References

1.
Dowell
,
E. H.
,
1970
, “
Panel Flutter—A Review of the Aeroelastic Stability of Plates and Shells
,”
AIAA J.
,
8
(
3
), pp.
385
399
.
2.
Chai
,
Y.
,
Gao
,
W.
,
Ankay
,
B.
,
Li
,
F.
, and
Zhang
,
C.
,
2021
, “
Aeroelastic Analysis and Flutter Control of Wings and Panels: A Review
,”
Int. J. Mech. Syst. Dyn.
,
1
(
1
), pp.
5
34
.
3.
Merrett
,
C. G.
, and
Hilton
,
H. H.
,
2010
, “
Elastic and Viscoelastic Panel Flutter in Incompressible, Subsonic and Compressible Flows
,”
J. Aeroelast. Struct. Dyn.
,
2
(
1
), pp.
53
80
.
4.
Amato
,
M.
,
Elishakoff
,
I.
, and
Reddy
,
J.
,
2021
, “
Flutter of a Multicomponent Beam in a Supersonic Flow
,”
AIAA J.
,
59
(
11
), pp.
4342
4353
.
5.
Lighthill
,
M. J.
,
1953
, “
Oscillating Airfoils at High Mach Number
,”
J. Aeronaut. Sci.
,
20
(
6
), pp.
402
406
.
6.
Ashley
,
H.
, and
Zartarian
,
G.
,
1956
, “
Piston Theory—A New Aerodynamic Tool for the Aeroelastician
,”
J. Aeronaut. Sci.
,
23
(
12
), pp.
1109
1118
.
7.
Vedeneev
,
V. V.
,
2012
, “
Panel Flutter at Low Supersonic Speeds
,”
J. Fluids Struct.
,
29
, pp.
79
96
.
8.
Vedeneev
,
V. V.
,
2013
, “
Effect of Damping on Flutter of Simply Supported and Clamped Panels at Low Supersonic Speeds
,”
J. Fluids Struct.
,
40
, pp.
366
372
.
9.
Shitov
,
S.
, and
Vedeneev
,
V.
,
2017
, “
Flutter of Rectangular Simply Supported Plates at Low Supersonic Speeds
,”
J. Fluids Struct.
,
69
, pp.
154
173
.
10.
Shishaeva
,
A.
,
Vedeneev
,
V.
,
Aksenov
,
A.
, and
Sushko
,
G.
,
2018
, “
Transonic Panel Flutter in Accelerating Or Decelerating Flow Conditions
,”
AIAA J.
,
56
(
3
), pp.
997
1010
.
11.
Dowell
,
E. H.
,
1974
,
Aeroelasticity of Plates and Shells
, Vol.
1
,
Springer Science & Business Media
,
Switzerland
.
12.
Pacheco
,
D. R.
,
Ferreira
,
A. J.
, and
Marques
,
F. D.
,
2018
, “
On the Effects of Structural Coupling on the Supersonic Flutter and Limit Cycle Oscillations of Transversely Reinforced Panels
,”
J. Fluids Struct.
,
79
, pp.
158
170
.
13.
Chueshov
,
I.
,
Dowell
,
E. H.
,
Lasiecka
,
I.
, and
Webster
,
J. T.
,
2016
, “
Nonlinear Elastic Plate in a Flow of Gas: Recent Results and Conjectures
,”
Appl. Math. Optim.
,
73
(
3
), pp.
475
500
.
14.
Song
,
Z.
,
Chen
,
Y.
,
Li
,
Z.
,
Sha
,
J.
, and
Li
,
F.
,
2019
, “
Axially Functionally Graded Beams and Panels in Supersonic Airflow and Their Excellent Capability for Passive Flutter Suppression
,”
Aerosp. Sci. Technol.
,
92
, pp.
668
675
.
15.
Wei
,
J.
,
Song
,
Z.
, and
Li
,
F.
,
2020
, “
Superior Aeroelastic Behaviors of Axially Functional Graded Cylindrical Shells in Supersonic Airflow
,”
J. Fluids Struct.
,
96
, p.
103027
.
16.
Sun
,
Y.
,
Song
,
Z.
,
Ma
,
W.
, and
Li
,
F.
,
2021
, “
Influence Mechanism of Lumped Masses on the Flutter Behavior of Structures
,”
Aerosp. Sci. Technol.
,
111
, p.
106524
.
17.
Pacheco
,
D. R.
,
Marques
,
F. D.
, and
Ferreira
,
A. J.
,
2018
, “
Panel Flutter Suppression With Nonlinear Energy Sinks: Numerical Modeling and Analysis
,”
Int. J. Non-Linear Mech.
,
106
, pp.
108
114
.
18.
Paidoussis
,
M. P.
,
1998
,
Fluid–Structure Interactions: Slender Structures and Axial Flow
, Vol.
1
.
Academic Press
,
Amsterdam
.
19.
Argentina
,
M.
, and
Mahadevan
,
L.
,
2005
, “
Fluid-Flow-Induced Flutter of a Flag
,”
Proc. Natl. Acad. Sci. U. S. A.
,
102
(
6
), pp.
1829
1834
.
20.
Eloy
,
C.
,
Lagrange
,
R.
,
Souilliez
,
C.
, and
Schouveiler
,
L.
,
2008
, “
Aeroelastic Instability of Cantilevered Flexible Plates in Uniform Flow
,”
J. Fluid Mech.
,
611
, pp.
97
106
.
21.
Zhao
,
W.
,
Païdoussis
,
M. P.
,
Tang
,
L.
,
Liu
,
M.
, and
Jiang
,
J.
,
2012
, “
Theoretical and Experimental Investigations of the Dynamics of Cantilevered Flexible Plates Subjected to Axial Flow
,”
J. Sound Vib.
,
331
(
3
), pp.
575
587
.
22.
De Breuker
,
R.
,
Abdalla
,
M. M.
, and
Gurdal
,
Z.
,
2008
, “
Flutter of Partially Rigid Cantilevered Two-Dimensional Plates in Axial Flow
,”
AIAA J.
,
46
(
4
), pp.
936
946
.
23.
McHugh
,
K. A.
,
Freydin
,
M.
,
Bastos
,
K. K.
,
Beran
,
P.
, and
Dowell
,
E. H.
,
2021
, “
Flutter and Limit Cycle Oscillations of Cantilevered Plate in Supersonic Flow
,”
J. Aircr.
,
58
(
2
), pp.
266
278
.
24.
Zhang
,
D.
,
Tan
,
J.
, and
Lv
,
L.
,
2015
, “
Investigation on Flow and Mixing Characteristics of Supersonic Mixing Layer Induced by Forced Vibration of Cantilever
,”
Acta Astronaut.
,
117
, pp.
440
449
.
25.
Currao
,
G. M.
,
Neely
,
A. J.
,
Kennell
,
C. M.
,
Gai
,
S. L.
, and
Buttsworth
,
D. R.
,
2019
, “
Hypersonic Fluid–Structure Interaction on a Cantilevered Plate With Shock Impingement
,”
AIAA J.
,
57
(
11
), pp.
4819
4834
.
26.
Ehrhardt
,
D. A.
,
Hill
,
T. L.
,
Neild
,
S. A.
, and
Cooper
,
J. E.
,
2018
, “
Veering and Nonlinear Interactions of a Clamped Beam in Bending and Torsion
,”
J. Sound Vib.
,
416
, pp.
1
16
.
27.
Stanford
,
B.
, and
Beran
,
P.
,
2013
, “
Aerothermoelastic Topology Optimization With Flutter and Buckling Metrics
,”
Struct. Multidiscipl. Optim.
,
48
(
1
), pp.
149
171
.
28.
Jonsson
,
E.
,
Mader
,
C. A.
,
Kennedy
,
G.
, and
Martins
,
J. R.
,
2019
, “
Computational Modeling of Flutter Constraint for High-Fidelity Aerostructural Optimization
,”
AIAA Scitech 2019 Forum
,
San Diego, CA
, p.
2354
.
29.
Jin
,
P.
,
Song
,
B.
,
Zhong
,
X.
,
Yu
,
T.
, and
Xu
,
F.
,
2016
, “
Aeroelastic Tailoring of Composite Sandwich Panel With Lamination Parameters
,”
Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng.
,
230
(
1
), pp.
105
117
.
30.
Nitschke
,
C.
,
Vincenti
,
A.
, and
Chassaing
,
J.-C.
,
2019
, “
Influence of Stochastic Perturbations of Composite Laminate Layups on the Aeroelastic Flutter of a Cantilevered Plate Wing
,”
Compos. Struct.
,
220
, pp.
809
826
.
31.
Mondragon
,
J. M.
, and
Hubbard
,
J. E.
,
2020
, “
Mode Switching Phenomenon on Variable Cant Angle Wingletted Wings
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
, p.
2288
.
32.
Amoozgar
,
M.
,
Fazelzadeh
,
S.
,
Khodaparast
,
H. H.
,
Friswell
,
M.
, and
Cooper
,
J.
,
2020
, “
Aeroelastic Stability Analysis of Aircraft Wings With Initial Curvature
,”
Aerosp. Sci. Technol.
,
107
, p.
106241
.
33.
Amoozgar
,
M.
,
Ajaj
,
R.
, and
Cooper
,
J.
,
2022
, “
The Effect of Elastic Couplings and Material Uncertainties on the Flutter of Composite High Aspect Ratio Wings
,”
J. Fluids Struct.
,
108
, p.
103439
.
34.
Virot
,
E.
,
Amandolese
,
X.
, and
Hémon
,
P.
,
2013
, “
Fluttering Flags: An Experimental Study of Fluid Forces
,”
J. Fluids Struct.
,
43
, pp.
385
401
.
35.
Michelin
,
S.
, and
Doaré
,
O.
,
2013
, “
Energy Harvesting Efficiency of Piezoelectric Flags in Axial Flows
,”
J. Fluid Mech.
,
714
, pp.
489
504
.
36.
Odaka
,
Y.
, and
Furuya
,
H.
,
2005
, “
Robust Structural Optimization of Plate Wing Corresponding to Bifurcation in Higher Mode Flutter
,”
Struct. Multidiscipl. Optim.
,
30
(
6
), pp.
437
446
.
37.
Jonsson
,
E.
,
Riso
,
C.
,
Lupp
,
C. A.
,
Cesnik
,
C. E.
,
Martins
,
J. R.
, and
Epureanu
,
B. I.
,
2019
, “
Flutter and Post-Flutter Constraints in Aircraft Design Optimization
,”
Prog. Aerosp. Sci.
,
109
, p.
100537
.
38.
Nayfeh
,
A.
, and
Pai
,
F.
,
2004
,
Linear and Nonlinear Structural Mechanics
,
Wiley
,
Hoboken, NJ
.
39.
Tang
,
D.
,
Zhao
,
M.
, and
Dowell
,
E. H.
,
2014
, “
Inextensible Beam and Plate Theory: Computational Analysis and Comparison With Experiment
,”
ASME J. Appl. Mech.
,
81
(
6
), p.
061009
.
40.
Meirovitch
,
L.
,
2001
,
Fundamentals of Vibrations
(
McGraw-Hill Higher Education
),
McGraw-Hill
,
Boston, MA
.
41.
Dowell
,
E. H.
,
1984
, “
On Asymptotic Approximations to Beam Model Shapes
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
439
439
.
42.
Dunnmon
,
J.
,
Stanton
,
S.
,
Mann
,
B.
, and
Dowell
,
E.
,
2011
, “
Power Extraction From Aeroelastic Limit Cycle Oscillations
,”
J. Fluids Struct.
,
27
(
8
), pp.
1182
1198
.
43.
Tang
,
D.
,
Yamamoto
,
H.
, and
Dowell
,
E.
,
2003
, “
Flutter and Limit Cycle Oscillations of Two-Dimensional Panels in Three-Dimensional Axial Flow
,”
J. Fluids Struct.
,
17
(
2
), pp.
225
242
.
44.
McHugh
,
K.
, and
Dowell
,
E.
,
2018
, “
Nonlinear Responses of Inextensible Cantilever and Free–Free Beams Undergoing Large Deflections
,”
ASME J. Appl. Mech.
,
85
(
5
), p.
051008
.
You do not currently have access to this content.