Abstract

Built-up structures exhibit nonlinear dynamic phenomena due to friction at the surfaces that are held together using mechanical fasteners. This nonlinearity is hysteretic or history dependent. Additionally, interfacial slip results in stiffness and damping variations that are dependent on the vibration amplitude. In the microslip regime, the dissipation varies as a power of the amplitude. The four-parameter Iwan model can capture both the hysteretic and power-law dissipation behavior that is characteristic of many bolted joints. However, simulating the dynamic response of this model is computationally expensive since the states of several slider elements must be tracked implicitly, necessitating the use of fixed-step integration schemes with small time-steps. The Bouc–Wen model is an alternative hysteretic model in which the restoring force is given by a first-order nonlinear differential equation. Numerical integration of this model is much faster because it consists of just one additional state variable, i.e., the hysteretic variable. Existing literature predominantly focuses on studying the steady-state behavior of this model. This paper tests the effectiveness of the Bouc–Wen model in capturing power-law dissipation by comparing it to four-parameter Iwan models with various parameters. Additionally, the effect of each Bouc–Wen parameter on the overall amplitude-dependent damping is presented. The results show that the Bouc–Wen model cannot capture power-law behavior over the entire microslip regime, but it can be tuned to simulate the response over a smaller amplitude range.

References

1.
Richards
,
E. J.
, and
Mead
,
D. J.
,
1968
,
Noise and Acoustic Fatigue in Aeronautics
, 1st ed.,
John Wiley & Sons Ltd.
,
London
.
2.
Ungar
,
E.
,
1973
, “
The Status of Engineering Knowledge Concerning the Damping of Built-Up Structures
,”
J. Sound Vib.
,
26
(
1
), pp.
141
154
.
3.
Gaul
,
L.
, and
Lenz
,
J.
,
1997
, “
Nonlinear Dynamics of Structures Assembled by Bolted Joints
,”
Acta Mech.
,
125
(
1
), pp.
169
181
.
4.
Lenz
,
J.
, and
Gaul
,
L.
,
1995
, “
The Influence of Microslip on the Dynamic Behavior of Bolted Joints
,”
Proceedings of the International Modal Analysis Conference (IMAC XXIII)
,
Nashville, TN
,
Feb. 13–16
, pp.
248
254
.
5.
Smallwood
,
D. O.
,
Gregory
,
D. L.
, and
Coleman
,
R. G.
,
2000
, “
Damping Investigations of a Simplified Frictional Shear Joint
,” Tech. Rep. SAND2000-1929C,
Sandia National Lab. (SNL-NM)
,
Albuquerque, NM
.
6.
Deaner
,
B. J.
,
Allen
,
M. S.
,
Starr
,
M. J.
,
Segalman
,
D. J.
, and
Sumali
,
H.
,
2015
, “
Application of Viscous and Iwan Modal Damping Models to Experimental Measurements From Bolted Structures
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021012
.
7.
Roettgen
,
D. R.
, and
Allen
,
M. S.
,
2017
, “
Nonlinear Characterization of a Bolted, Industrial Structure Using a Modal Framework
,”
Mech. Syst. Signal Process.
,
84
(
B
), pp.
152
170
.
8.
Goodman
,
L. E.
,
1980
, “
Contributions of Continuum Mechanics to the Analysis of the Sliding of Unlubricated Solids
,”
AMD Symposium Series of the ASME Applied Mechanics Division
, Vol.
39
, pp.
1
12
.
9.
Segalman
,
D. J.
,
2006
, “
Modelling Joint Friction in Structural Dynamics
,”
Struct. Control Health Monitor.
,
13
(
1
), pp.
430
453
.
10.
Lee
,
S.-Y.
,
Ko
,
K.-H.
, and
Lee
,
J. M.
,
2000
, “
Analysis of Dynamic Characteristics of Structural Joints Using Stiffness Influence Coefficients
,”
J. Mech. Sci. Technol.
,
12
(
14
), pp.
1319
1327
.
11.
Jewell
,
E.
,
Allen
,
M. S.
,
Zare
,
I.
, and
Wall
,
M.
,
2020
, “
Application of Quasi-static Modal Analysis to a Finite Element Model and Experimental Correlation
,”
J. Sound Vib.
,
479
, p.
115376
.
12.
Segalman
,
D. J.
,
2001
, “
An Initial Overview of Iwan Modeling for Mechanical Joints
,” Tech. Rep. SAND2001-0811, 780307,
Sandia National Lab. (SNL-NM)
,
Albuquerque, NM
.
13.
Najera-Flores
,
D. A.
, and
Kuether
,
R. J.
,
2020
, “
A Study of Whole Joint Model Calibration Using Quasi-static Modal Analysis
,”
ASME J. Vib. Acoust.
,
142
(
5
), p.
051109
.
14.
Segalman
,
D. J.
,
2010
, “
A Modal Approach to Modeling Spatially Distributed Vibration Energy Dissipation
,” Tech. Rep., SAND2010-4763, 993326,
Sandia National Lab
.,
Albuquerque, NM
.
15.
Gaul
,
L.
, and
Nitsche
,
R.
,
2001
, “
The Role of Friction in Mechanical Joints
,”
Appl. Mech. Rev.
,
54
(
2
), pp.
93
106
.
16.
Mathis
,
A. T.
,
Balaji
,
N. N.
,
Kuether
,
R. J.
,
Brink
,
A. R.
,
Brake
,
M. R. W.
, and
Quinn
,
D. D.
,
2020
, “
A Review of Damping Models for Structures With Mechanical Joints1
,”
Appl. Mech. Rev.
,
72
(
4
), p.
040802
.
17.
Iwan
,
W. D.
,
1966
, “
A Distributed-Element Model for Hysteresis and Its Steady-State Dynamic Response
,”
ASME J. Appl. Mech.
,
33
(
4
), pp.
893
900
.
18.
Song
,
Y.
,
Hartwigsen
,
C. J.
,
McFarland
,
D. M.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2004
, “
Simulation of Dynamics of Beam Structures With Bolted Joints Using Adjusted Iwan Beam Elements
,”
J. Sound Vib.
,
273
(
1
), pp.
249
276
.
19.
Segalman
,
D. J.
,
2005
, “
A Four-Parameter Iwan Model for Lap-Type Joints
,”
ASME J. Appl. Mech.
,
72
(
5
), pp.
752
760
.
20.
Mignolet
,
M. P.
,
Song
,
P.
, and
Wang
,
X. Q.
,
2015
, “
A Stochastic Iwan-Type Model for Joint Behavior Variability Modeling
,”
J. Sound Vib.
,
349
, pp.
289
298
.
21.
Brake
,
M. R. W.
,
2017
, “
A Reduced Iwan Model That Includes Pinning for Bolted Joint Mechanics
,”
Nonlinear Dyn.
,
87
(
2
), pp.
1335
1349
.
22.
Shetty
,
D.
, and
Allen
,
M.
,
2020
, “
Fast Simulation of a Single Degree-of-Freedom System Consisting of an Iwan Element Using the Method of Averaging
,”
ASME J. Vib. Acoust.
,
142
(
5
), p.
051107
.
23.
Bouc
,
R.
,
1971
, “
A Mathematical Model for Hysteresis
,”
Acustica
,
21
, pp.
16
25
.
24.
Wen
,
Y.-K.
,
1976
, “
Method for Random Vibration of Hysteretic Systems
,”
J. Eng. Mech. Division
,
102
(
2
), pp.
249
263
.
25.
Dormand
,
J. R.
, and
Prince
,
P. J.
,
1980
, “
A Family of Embedded Runge–Kutta Formulae
,”
J. Comput. Appl. Math.
,
6
(
1
), pp.
19
26
.
26.
Ismail
,
M.
,
Ikhouane
,
F.
, and
Rodellar
,
J.
,
2009
, “
The Hysteresis Bouc–Wen Model, A Survey
,”
Arch. Comput. Methods Eng.
,
16
(
2
), pp.
161
188
.
27.
Low
,
T. S.
, and
Guo
,
W.
,
1995
, “
Modeling of a Three-Layer Piezoelectric Bimorph Beam With Hysteresis
,”
J. Microelectromech. Syst.
,
4
(
4
), pp.
230
237
.
28.
Yoshioka
,
H.
,
Ramallo
,
J. C.
, and
Spencer
,
B. F.
,
2002
, “
‘Smart’ Base Isolation Strategies Employing Magnetorheological Dampers
,”
J. Eng. Mech.
,
128
(
5
), pp.
540
551
.
29.
Foliente
,
G. C.
,
1995
, “
Hysteresis Modeling of Wood Joints and Structural Systems
,”
J. Struct. Eng.
,
121
(
6
), pp.
1013
1022
.
30.
Oldfield
,
M.
,
Ouyang
,
H.
, and
Mottershead
,
J. E.
,
2005
, “
Simplified Models of Bolted Joints Under Harmonic Loading
,”
Comput. Struct.
,
84
(
1
), pp.
25
33
.
31.
Fantetti
,
A.
,
Tamatam
,
L. R.
,
Volvert
,
M.
,
Lawal
,
I.
,
Liu
,
L.
,
Salles
,
L.
,
Brake
,
M. R. W.
,
Schwingshackl
,
C. W.
, and
Nowell
,
D.
,
2019
, “
The Impact of Fretting Wear on Structural Dynamics: Experiment and Simulation
,”
Tribol. Int.
,
138
, pp.
111
124
.
32.
Allen
,
M. S.
,
Schoneman
,
J.
,
Scott
,
W.
, and
Sills
,
J.
,
2020
, “
Application of Quasi-Static Modal Analysis to an Orion Multi-Purpose Crew Vehicle Test
,”
38th International Modal Analysis Conference
,
Houston, TX
,
Feb. 10–13
, Springer International Publishing, pp.
65
75
.
33.
Porter
,
J. H.
,
Balaji
,
N. N.
,
Little
,
C. R.
, and
Brake
,
M. R. W.
,
2022
, “
A Quantitative Assessment of the Model Form Error of Friction Models Across Different Interface Representations for Jointed Structures
,”
Mech. Syst. Signal Process.
,
163
, p.
108163
.
34.
Charalampakis
,
A. E.
, and
Koumousis
,
V. K.
,
2008
, “
On the Response and Dissipated Energy of Bouc–Wen Hysteretic Model
,”
J. Sound Vib.
,
309
(
3
), pp.
887
895
.
35.
Guo
,
K.
,
Zhang
,
X.
,
Li
,
H.
,
Hua
,
H.
, and
Meng
,
G.
,
2008
, “
A New Dynamical Friction Model
,”
Int. J. Mod. Phys. B
,
22
(
8
), pp.
967
980
.
36.
Zhu
,
X.
, and
Lu
,
X.
,
2011
, “
Parametric Identification of Bouc–Wen Model and Its Application in Mild Steel Damper Modeling
,”
Procedia Eng.
,
14
, pp.
318
324
.
37.
Eriten
,
M.
,
Kurt
,
M.
,
Luo
,
G.
,
Michael McFarland
,
D.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2013
, “
Nonlinear System Identification of Frictional Effects in a Beam With a Bolted Joint Connection
,”
Mech. Syst. Signal Process.
,
39
(
1
), pp.
245
264
.
38.
Moldenhauer
,
B. J.
,
Singh
,
A.
,
Thoenen
,
P.
,
Roettgen
,
D. R.
,
Pacini
,
B. R.
,
Kuether
,
R. J.
, and
Allen
,
M. S.
,
2019
, “
Influences of Modal Coupling on Experimentally Extracted Nonlinear Modal Models
,”
37th International Modal Analysis Conference
,
Orlando, FL
,
Jan. 28–31
, Springer International Publishing, pp.
189
204
. .
39.
Wall
,
M.
,
Allen
,
M. S.
, and
Kuether
,
R. J.
,
2022
, “
Observations of Modal Coupling Due to Bolted Joints in an Experimental Benchmark Structure
,”
Mech. Syst. Signal Process.
,
162
, p.
107968
.
40.
Lacayo
,
R. M.
,
Deaner
,
B. J.
, and
Allen
,
M. S.
,
2017
, “
A Numerical Study on the Limitations of Modal Iwan Models for Impulsive Excitations
,”
J. Sound Vib.
,
390
, pp.
118
140
.
41.
Brake
,
M. R.
,
2018
,
The Mechanics of Jointed Structures
,
Springer International Publishing
,
Cham
.
42.
Jayakumar
,
P.
,
1987
, “
Modeling and Identification in Structural Dynamics
,” Report or Paper,
California Institute of Technology
,
Pasadena, CA
, May Issue: 87-01 Number: 87-01.
43.
Feldman
,
M.
,
1994
, “
Non-Linear System Vibration Analysis Using Hilbert Transform—I. Free Vibration Analysis Method ‘Freevib’
,”
Mech. Syst. Signal Process.
,
8
(
2
), pp.
119
127
.
44.
Sumali
,
H.
, and
Kellogg
,
R. A.
,
2011
, “
Calculating Damping From Ring-Down Using Hilbert Transform and Curve Fitting
,” Tech. Rep. SAND2011-1960C,
Sandia National Lab
.,
Albuquerque, NM
.
45.
Miah
,
M. S.
,
Chatzi
,
E. N.
,
Dertimanis
,
V. K.
, and
Weber
,
F.
,
2015
, “
Nonlinear Modeling of a Rotational MR Damper Via an Enhanced Bouc–Wen Model
,”
Smart Mater. Struct.
,
24
(
10
), p.
105020
.
46.
Pelliciari
,
M.
,
Briseghella
,
B.
,
Tondolo
,
F.
,
Veneziano
,
L.
,
Nuti
,
C.
,
Greco
,
R.
,
Lavorato
,
D.
, and
Tarantino
,
A. M.
,
2020
, “
A Degrading Bouc–Wen Model for the Hysteresis of Reinforced Concrete Structural Elements
,”
Struct. Infrastruct. Eng.
,
16
(
7
), pp.
917
930
.
You do not currently have access to this content.