Abstract

Epicyclic gears, also commonly referred to as planetary gears, are power transfer components that are commonly used in several industrial applications. The structural compliance of thin-rimmed annular ring gear can significantly influence the performance of an epicyclic gear set. As powertrain components are continually being optimized to their design limits, this influence becomes prominent and can no longer be ignored. Therefore to capture the influence associated with ring gear flexibility, the current study will incorporate a finite element-based ring gear formulation into the three-dimensional planetary dynamic load distribution model (Ryali, and Talbot, 2021, “A Dynamic Load Distribution Model of Planetary Gear Sets,” Mech. Mach. Theory, 158, p. 104229). The proposed contact model employs a modified simplex algorithm to iteratively solve for the elastic gear mesh contacts in conjunction with a numerical integration scheme, which enables it to inherently capture the influence of several components and system-level design variations without the need for an empirical mesh stiffness formulation or transmission error excitation of the system. The developed formulation will be used to study the dynamic response of planetary gear sets where the ring gear is a rotating member. The discussed results demonstrate the fidelity of the developed model, thus making it an excellent tool for the design and analysis of planetary gears.

References

1.
Kahraman
,
A.
,
Ligata
,
H.
, and
Singh
,
A.
,
2010
, “
Influence of Ring Gear Rim Thickness on Planetary Gear Set Behavior
,”
ASME J. Mech. Des.
,
132
(
2
), p.
021002
.
2.
Ligata
,
H.
,
Kahraman
,
A.
, and
Singh
,
A.
,
2008
, “
An Experimental Study of the Influence of Manufacturing Errors on the Planetary Gear Stresses and Planet Load Sharing
,”
ASME J. Mech. Des.
,
130
(
4
), p.
041701
.
3.
Singh
,
A.
,
Kahraman
,
A.
, and
Ligata
,
H.
,
2008
, “
Internal Gear Strains and Load Sharing in Planetary Transmissions: Model and Experiments
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072602
.
4.
Dai
,
H.
,
Long
,
X.
,
Chen
,
F.
, and
Bian
,
J.
,
2021
, “
Experimental Investigation of the Ring-Planet Gear Meshing Forces Identification
,”
J. Sound Vib.
,
493
, p.
115844
.
5.
Hidaka
,
T.
,
Terauchi
,
Y.
, and
Nagamura
,
K.
,
1979
, “
Dynamic Behavior of Planetary Gear: 7th Report, Influence of the Thickness of the Ring Gear
,”
Bull. JSME
,
22
(
170
), pp.
1142
1149
.
6.
Hidaka
,
T.
,
Ishida
,
T.
, and
Uchida
,
F.
,
1984
, “
Effects of Rim Thickness and Number of Teet on Bending Strength of Internal Gear
,”
Bull. JSME
,
27
(
223
), pp.
110
116
.
7.
Lewicki
,
D. G.
, and
Ballarini
,
R.
,
1997
, “
Effect of Rim Thickness on Gear Crack Propagation Path
,”
ASME J. Mech. Des.
,
119
(
1
), pp.
88
95
.
8.
Abousleiman
,
V.
, and
Velex
,
P.
,
2006
, “
A Hybrid 3D Finite Element/Lumped Parameter Model for Quasi-Static and Dynamic Analyses of Planetary/Epicyclic Gear Sets
,”
Mech. Mach. Theory
,
41
(
6
), pp.
725
748
.
9.
Kahraman
,
A.
,
Kharazi
,
A. A.
, and
Umrani
,
M.
,
2003
, “
A Deformable Body Dynamic Analysis of Planetary Gears With Thin Rims
,”
J. Sound Vib.
,
262
(
3
), pp.
752
768
.
10.
Abousleiman
,
V.
,
Velex
,
P.
, and
Becquerelle
,
S.
,
2007
, “
Modeling of Spur and Helical Gear Planetary Drives With Flexible Ring Gears and Planet Carriers
,”
ASME J. Mech. Des.
,
129
(
1
), pp.
95
106
.
11.
Kahraman
,
A.
, and
Vijayakar
,
S.
,
2001
, “
Effect of Internal Gear Flexibility on the Quasi-Static Behavior of a Planetary Gear Set
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
408
415
.
12.
Ambarisha
,
V. K.
, and
Parker
,
R. G.
,
2007
, “
Nonlinear Dynamics of Planetary Gears Using Analytical and Finite Element Models
,”
J. Sound Vib.
,
302
(
3
), pp.
577
595
.
13.
Chapron
,
M.
,
Velex
,
P.
,
Bruyère
,
J.
, and
Becquerelle
,
S.
,
2015
, “
Optimization of Profile Modifications With Regard to Dynamic Tooth Loads in Single and Double-Helical Planetary Gears With Flexible Ring-Gears
,”
ASME J. Mech. Des.
,
138
(
2
), p.
023301
.
14.
Chen
,
Z.
, and
Shao
,
Y.
,
2013
, “
Mesh Stiffness of an Internal Spur Gear Pair With Ring Gear Rim Deformation
,”
Mech. Mach. Theory
,
69
, pp.
1
12
.
15.
Chen
,
Z.
,
Shao
,
Y.
, and
Su
,
D.
,
2013
, “
Dynamic Simulation of Planetary Gear Set With Flexible Spur Ring Gear
,”
J. Sound Vib.
,
332
(
26
), pp.
7191
7204
.
16.
Chen
,
Z.
,
Zhu
,
Z.
, and
Shao
,
Y.
,
2015
, “
Fault Feature Analysis of Planetary Gear System With Tooth Root Crack and Flexible Ring Gear Rim
,”
Eng. Fail. Anal.
,
49
, pp.
92
103
.
17.
Hu
,
Y.
,
Talbot
,
D.
, and
Kahraman
,
A.
,
2019
, “
A Gear Load Distribution Model for a Planetary Gear Set With a Flexible Ring Gear Having External Splines
,”
ASME J. Mech. Des.
,
141
(
5
), p.
053301
.
18.
Ge
,
N.
, and
Zhang
,
J.
,
2008
, “
Finite Element Analysis of Internal Gear in High-Speed Planetary Gear Units
,”
Trans. Tianjin Univ.
,
14
(
1
), pp.
11
15
.
19.
Oda
,
S.
, and
Miyachika
,
K.
,
1987
, “
Root Stress of Thin-Rimmed Internal Spur Gear Supported With Pins : Vibration, Control Engineering, Engineering for Industry
,”
JSME Int. J.
,
30
(
262
), pp.
646
652
.
20.
Oda
,
S.
,
Miyachika
,
K.
, and
Araki
,
K.
,
1984
, “
Effects of Rim Thickness on Root Stress and Bending Fatigue Strength of Internal Gear Tooth
,”
Bull. JSME
,
27
(
230
), pp.
1759
1764
.
21.
Parker
,
R. G.
, and
Wu
,
X.
,
2010
, “
Vibration Modes of Planetary Gears With Unequally Spaced Planets and an Elastic Ring Gear
,”
J. Sound Vib.
,
329
(
11
), pp.
2265
2275
.
22.
Parker
,
R. G.
, and
Wu
,
X.
,
2012
, “
Parametric Instability of Planetary Gears Having Elastic Continuum Ring Gears
,”
ASME J. Vib. Acoust.
,
134
(
4
), p.
041011
.
23.
Wang
,
C.
, and
Parker
,
R. G.
,
2021
, “
Modal Properties and Parametrically Excited Vibrations of Spinning Epicyclic/Planetary Gears With a Deformable Ring
,”
J. Sound Vib.
,
494
, p.
115828
.
24.
Wu
,
X.
, and
Parker
,
R. G.
,
2006
, “
Vibration of Rings on a General Elastic Foundation
,”
J. Sound Vib.
,
295
(
1
), pp.
194
213
.
25.
Wu
,
X.
, and
Parker
,
R. G.
,
2008
, “
Modal Properties of Planetary Gears With an Elastic Continuum Ring Gear
,”
ASME J. Appl. Mech.
,
75
(
3
), p.
031014
.
26.
Hidaka
,
T.
,
Terauchi
,
Y.
,
Nohara
,
M.
, and
Oshita
,
J.
,
1977
, “
Dynamic Behavior of Planetary Gear: 3rd Report, Displacement of Ring Gear in Direction of Line of Action
,”
Bull. JSME
,
20
(
150
), pp.
1663
1672
.
27.
Guo
,
Y.
, and
Parker
,
R. G.
,
2010
, “
Dynamic Modeling and Analysis of a Spur Planetary Gear Involving Tooth Wedging and Bearing Clearance Nonlinearity
,”
Eur. J. Mech. A/Solids
,
29
(
6
), pp.
1022
1033
.
28.
Ligata
,
H.
,
Kahraman
,
A.
, and
Singh
,
A.
,
2009
, “
A Closed-Form Planet Load Sharing Formulation for Planetary Gear Sets Using a Translational Analogy
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021007
.
29.
Vijayakar
,
S.
,
1991
, “
A Combined Surface Integral and Finite Element Solution for a Three-Dimensional Contact Problem
,”
Int. J. Numer. Meth. Eng.
,
31
(
3
), pp.
525
545
.
30.
Hu
,
Y.
,
Talbot
,
D.
, and
Kahraman
,
A.
,
2018
, “
A Load Distribution Model for Planetary Gear Sets
,”
ASME J. Mech. Des.
,
140
(
5
), p.
053302
.
31.
Ryali
,
L.
, and
Talbot
,
D.
,
2021
, “
A Dynamic Load Distribution Model of Planetary Gear Sets
,”
Mech. Mach. Theory
,
158
, p.
104229
.
32.
Sabir
,
A. B.
, and
Ashwell
,
D. G.
,
1971
, “
A Comparison of Curved Beam Finite Elements When Used in Vibration Problems
,”
J. Sound Vib.
,
18
(
4
), pp.
555
563
.
33.
Sabir
,
A. B.
,
Djoudi
,
M. S.
, and
Sfendji
,
A.
,
1994
, “
The Effect of Shear Deformation on Vibration of Circular Arches by Finite Elements Method
,”
Thin-Walled Struct.
,
18
, pp.
47
63
.
34.
Ryali
,
L.
,
2021
,
A Dynamic Load Distribution Model of Planetary Gear Sets
,
The Ohio State University
,
Columbus, OH
.
35.
Conry
,
T. F.
, and
Seireg
,
A.
,
1971
, “
A Mathematical Programming Method for Design of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
38
(
2
), pp.
387
392
.
36.
Yau
,
E.
,
Busby
,
H. R.
, and
Houser
,
D. R.
,
1994
, “
A Rayleigh-Ritz Approach to Modeling Bending and Shear Deflections of Gear Teeth
,”
Comput. Struct.
,
50
(
5
), pp.
705
713
.
37.
Stegemiller
,
M. E.
, and
Houser
,
D. R.
,
1993
, “
A Three-Dimensional Analysis of the Base Flexibility of Gear Teeth
,”
ASME J. Mech. Des.
,
115
(
1
), pp.
186
192
.
38.
Cornell
,
R. W.
,
1981
, “
Compliance and Stress Sensitivity of Spur Gear Teeth
,”
ASME J. Mech. Des.
,
103
(
2
), pp.
447
459
.
39.
Ligata
,
H.
,
2007
,
Impact of System-Level Factors on Planetary Gear Set Behavior
,
The Ohio State University
,
Columbus, OH
.
40.
Ryali
,
L.
,
Verma
,
A.
,
Hong
,
I.
,
Talbot
,
D.
, and
Zhu
,
F.
,
2021
, “
Experimental and Theoretical Investigation of Quasi-Static System Level Behavior of Planetary Gear Sets
,”
ASME J. Mech. Des.
,
143
(
10
), p.
103401
.
41.
Ryali
,
L.
, and
Talbot
,
D.
,
2023
, “
A Dynamic Gear Load Distribution Model for Epicyclic Gear Sets With a Structurally Compliant Planet Carrier
,”
Mech. Mach. Theory
,
181
, p.
105225
.
You do not currently have access to this content.