Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This article presents a Jacobi–Ritz approach for conducting flutter and divergence analysis of a complex distributed propulsion aircraft wing similar to that of NASA X-57. The general orthogonal Jacobi polynomials are used to approximate the bending displacement and torsional rotation angle in the Ritz method-based structural and aeroelastic analysis. The Jacobi polynomials satisfy the orthogonality condition using weight functions, which are easily modified to satisfy different essential and natural boundary conditions. Compared to simple polynomials, Jacobi polynomials can eliminate the well-known ill-conditioning numerical issues when considering higher-order polynomial terms during the eigenvalue analysis. The Jacobi–Ritz method is also found to alleviate mode switching, which is often encountered in tracking the changes of modes with the varying airspeed. The Jacobi–Ritz method is later used to investigate the flutter and divergence speeds under different parameters including distributed propulsor mass and their locations, nonuniform aerodynamic model for the wing in the presence of multiple propulsors, and the sweep angle. Results show that placing the distributed propulsors on the wing’s leading edge increases the flutter speed even though the bending and torsion modal frequencies are decreased compared to those of the wing without propulsors. The presence of pods for the middle high-lift motors causes an extra aerodynamic moment, which reduces the flutter speed. Parametric studies also show that the divergence speed is lower than the flutter speed for a uniform and straight distributed propulsor wing. Using swept-back wing configuration and placing the tip propulsor near the wing’s leading edge can help to increase both flutter and divergence speeds.

References

1.
Gibson
,
A.
,
Hall
,
D.
,
Waters
,
M.
,
Masson
,
P.
,
Schiltgen
,
B.
,
Foster
,
T.
, and
Keith
,
J.
,
2010
, “
The Potential and Challenge of Turboelectric Propulsion for Subsonic Transport Aircraft
,” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Paper No. AIAA 2010–276.
2.
Nguyen
,
N. T.
,
Reynolds
,
K.
,
Ting
,
E.
, and
Nguyen
,
N.
,
2018
, “
Distributed Propulsion Aircraft With Aeroelastic Wing Shaping Control for Improved Aerodynamic Efficiency
,”
J. Aircraft
,
55
(
3
), pp.
1122
1140
.
3.
Jansen
,
R. H.
,
Bowman
,
C. L.
,
Clarke
,
S.
,
Avanesian
,
D.
,
Dempsey
,
P. J.
, and
Dyson
,
R. W.
,
2020
, “
NASA Electrified Aircraft Propulsion Efforts
,”
Aircraft Eng. Aeros. Technol.
,
92
(
5
), pp.
667
673
.
4.
Borer
,
N. K.
,
Patterson
,
M. D.
,
Viken
,
J. K.
,
Moore
,
M. D.
,
Bevirt
,
J.
,
Stoll
,
A. M.
, and
Gibson
,
A. R.
,
2016
, “
Design and Performance of the NASA Sceptor Distributed Electric Propulsion Flight Demonstrator
,”
16th AIAA Aviation Technology, Integration, and Operations Conference
,
Washington, DC
,
June 13–17
, p.
3920
.
5.
Nguyen
,
N.
,
2008
, “
Integrated Flight Dynamic Modeling of Flexible Aircraft With Inertial Force-Propulsion-Aeroelastic Coupling
,” 46th AIAA Aerospace Sciences Meeting and Exhibit, Paper No. AIAA 2008–194.
6.
Massey
,
S. J.
,
Wieseman
,
C. D.
,
Stanford
,
B.
, and
Heeg
,
J.
,
2017
, “
Aeroelastic Analysis of a Distributed Electric Propulsion Wing
,” 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Paper No. AIAA 2017–0413.
7.
Memmolo
,
V.
,
Marano
,
A.
,
Maio
,
L.
,
Nicolosi
,
F.
, and
Marulo
,
F.
,
2022
, “
Aeroelastic Assessment of Distributed Electric Propulsion Wings
,”
IOP Conference Series: Materials Science and Engineering
,
Virtual Conference
,
Sept. 1–3
, Vol.
1226
,
IOP Publishing
, p.
012066
.
8.
Schubert
,
M.
,
Dafnis
,
A.
, and
Schröder
,
K.-U.
,
2022
, “
On the Aeroelastic Behavior of Wings With Distributed Propulsion: Simple Retrofit or Structural Modification
,”
International Forum on Aeroelasticity and Structural Dynamics, IFASD 2022
,
Madrid, Spain
,
June 13–17
.
9.
Mazidi
,
A.
, and
Fazelzadeh
,
S.
,
2010
, “
Flutter of a Swept Aircraft Wing With a Powered Engine
,”
J. Aeros. Eng.
,
23
(
4
), pp.
243
250
.
10.
Mazidi
,
A.
, and
Fazelzadeh
,
S.
,
2013
, “
Aeroelastic Modeling and Flutter Prediction of Swept Wings Carrying Twin Powered Engines
,”
J. Aeros. Eng.
,
26
(
3
), pp.
586
593
.
11.
Amoozgar
,
M.
,
Friswell
,
M. I.
,
Fazelzadeh
,
S. A.
,
Haddad Khodaparast
,
H.
,
Mazidi
,
A.
, and
Cooper
,
J. E.
,
2021
, “
Aeroelastic Stability Analysis of Electric Aircraft Wings With Distributed Electric Propulsors
,”
Aerospace
,
8
(
4
), p.
100
.
12.
Mardanpour
,
P.
,
Izadpanahi
,
E.
,
Rastkar
,
S.
,
Fazelzadeh
,
S. A.
, and
Hodges
,
D. H.
,
2018
, “
Geometrically Exact, Fully Intrinsic Analysis of Pre-twisted Beams Under Distributed Follower Forces
,”
AIAA. J.
,
56
(
2
), pp.
836
848
.
13.
Su
,
W.
,
2017
, “
Development of an Aeroelastic Formulation for Deformable Airfoils Using Orthogonal Polynomials
,”
AIAA. J.
,
55
(
8
), pp.
2793
2807
.
14.
Van Assche
,
W.
,
2006
, “Ordinary Special Functions,”
Encyclopedia of Mathematical Physics
,
J.-P.
Françoise
,
G. L.
Naber
, and
T. S.
Tsun
, eds.,
Academic Press
,
Oxford
, pp.
637
645
.
15.
Alanbay
,
B.
, and
Kapania
,
R. K.
,
2018
, “
On the Use of Classical Jacobi Orthogonal Polynomials in the Ritz Method
,” 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Paper No. AIAA 2018–1225.
16.
Melvin
,
J.
, and
Zhao
,
W.
,
2023
, “
A Jacobi-Ritz Approach for Flutter Analysis of Swept Distributed Propulsion Aircraft Wing
,”
ASME 2023 Aerospace Structures, Structural Dynamics, and Materials Conference of Aerospace Structures, Structural Dynamics, and Materials Conference
,
San Diego, CA
,
June 19–21
, p.
V001T02A002
.
17.
Carrera
,
E.
,
Augello
,
R.
,
Pagani
,
A.
, and
Scano
,
D.
,
2023
, “
Refined Multilayered Beam, Plate and Shell Elements Based on Jacobi Polynomials
,”
Composite Struct.
,
304
, p.
116275
.
18.
Agarwal
,
M.
,
Zhao
,
W.
, and
Kapania
,
R. K.
,
2023
, “
Ritz Method Using Orthogonal Jacobi Polynomials for Buckling Analysis of Curvilinearly Stiffened Functionally Graded Plate
,” AIAA SCITECH 2023 Forum, Paper No. AIAA 2023–1523.
19.
Alanbay
,
B.
,
Singh
,
K.
, and
Kapania
,
R. K.
,
2020
, “
Vibration of Curvilinearly Stiffened Plates Using Ritz Method With Orthogonal Jacobi Polynomials
,”
ASME J. Vib. Acoust.
,
142
(
1
), p.
011009
.
20.
NASA
,
2019
, “X-57 Maxwell Simplified CRM v.4.4.1,” https://hangar.openvsp.org/vspfiles/408, Accessed January 2023.
21.
Hodges
,
D. H.
, and
Pierce
,
G. A.
,
2011
,
Introduction to Structural Dynamics and Aaeroelasticity
, Vol.
15
,
Cambridge University Press
,
Cambridge, UK
.
22.
Bonneux
,
N.
,
2019
, “
Exceptional Jacobi Polynomials
,”
J. Approx. Theory
,
239
, pp.
72
112
.
23.
Goland
,
M.
, and
Luke
,
Y. L.
,
1948
, “
The Flutter of a Uniform Wing With Tip Weights
,”
ASME J. Appl. Mech.
,
15
(
1
), pp.
13
20
.
24.
Patil
,
M. J.
,
Hodges
,
D. H.
, and
Cesnik
,
C. E.
,
2000
, “
Nonlinear Aeroelastic Analysis of Complete Aircraft in Subsonic Flow
,”
J. Aircraft
,
37
(
5
), pp.
753
760
.
25.
Huang
,
R.
,
Qian
,
W.
,
Zhao
,
Y.
, and
Hu
,
H.
,
2010
, “
Flutter Analysis: Using Piecewise Quadratic Interpolation With Mode Tracking and Wind-Tunnel Tests
,”
J. aircraft
,
47
(
4
), pp.
1447
1451
.
26.
Hang
,
X.
,
Fei
,
Q.
, and
Su
,
W.
,
2019
, “
On Tracking Aeroelastic Modes in Stability Analysis Using Left and Right Eigenvectors
,”
AIAA. J.
,
57
(
10
), pp.
4447
4457
.
27.
Ren
,
Z.
,
2014
, “
Flutter Analysis and Mode Tracking of Aircraft Model Based on Piecewise Interpolation Method
,”
J. Vibroeng.
,
16
(
7
), pp.
3576
3585
.
28.
Yu
,
Q.
,
Damodaran
,
M.
, and
Khoo
,
B.
,
2023
, “
Predicting Wing-Pylon-Nacelle Configuration Flutter Characteristics Using Adaptive Continuation Method
,”
Advances Aerodynamics
,
5
(
21
).
29.
Heeg
,
J.
,
Stanford
,
B.
,
Wieseman
,
C. D.
,
Massey
,
S.
,
Moore
,
J.
, and
Truax
,
R. A.
,
2018
, “
Status Report on Aeroelasticity in the Vehicle Development for X-57 Maxwell
,” 2018 Applied Aerodynamics Conference, Paper No. AIAA 2018–3487.
30.
Karpouzian
,
G.
, and
Librescu
,
L.
,
1996
, “
Nonclassical Effects on Divergence and Flutter of Anisotropic Swept Aircraft Wings
,”
AIAA. J.
,
34
(
4
), pp.
786
794
.
31.
Firouz-Abadi
,
R. D.
,
Zarifian
,
P.
, and
Askarian
,
A. R.
,
2012
, “
Discussion of ‘Fflutter of a Swept Aircraft Wing With a Powered Engine” by a. Mazidi and S. a. Fazelzadeh
,”
J. Aeros. Eng.
,
25
(
3
), pp.
474
476
.
You do not currently have access to this content.